Cargando…
Impact of Not Addressing Partially Cross-Classified Multilevel Structure in Testing Measurement Invariance: A Monte Carlo Study
In educational settings, researchers are likely to encounter multilevel data with cross-classified structure. However, due to the lack of familiarity and limitations of statistical software for cross-classified modeling, most researchers adopt less optimal approaches to analyze cross-classified mult...
Autores principales: | Im, Myung H., Kim, Eun S., Kwok, Oi-Man, Yoon, Myeongsun, Willson, Victor L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4804162/ https://www.ncbi.nlm.nih.gov/pubmed/27047404 http://dx.doi.org/10.3389/fpsyg.2016.00328 |
Ejemplares similares
-
Reconsidering Cluster Bias in Multilevel Data: A Monte Carlo Comparison of Free and Constrained Baseline Approaches
por: Guenole, Nigel
Publicado: (2018) -
Addressing nonlinearities in Monte Carlo
por: Dauchet, Jérémi, et al.
Publicado: (2018) -
Multilevel and Quasi Monte Carlo Methods for the Calculation of the
Expected Value of Partial Perfect Information
por: Fang, Wei, et al.
Publicado: (2021) -
Relating Measurement Invariance, Cross-Level Invariance, and Multilevel Reliability
por: Jak, Suzanne, et al.
Publicado: (2017) -
Analyzing Complex Longitudinal Data in Educational Research: A Demonstration With Project English Language and Literacy Acquisition (ELLA) Data Using xxM
por: Kwok, Oi-Man, et al.
Publicado: (2018)