Cargando…

Simvastatin Results in a Dose-Dependent Toxic Effect on Spiral Ganglion Neurons in an In Vitro Organotypic Culture Assay

Statins are inhibitors of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase, an enzyme necessary for the production of mevalonate. They are widely used as cholesterol-lowering drugs. However, conflicting data about the effect of statins on neuronal cells has been published. To explore the effect o...

Descripción completa

Detalles Bibliográficos
Autores principales: Leitmeyer, Katharina, Glutz, Andrea, Setz, Cristian, Wieland, Leonie, Egloff, Sulamith, Bodmer, Daniel, Brand, Yves
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808657/
https://www.ncbi.nlm.nih.gov/pubmed/27051663
http://dx.doi.org/10.1155/2016/3580359
Descripción
Sumario:Statins are inhibitors of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase, an enzyme necessary for the production of mevalonate. They are widely used as cholesterol-lowering drugs. However, conflicting data about the effect of statins on neuronal cells has been published. To explore the effect of simvastatin on spiral ganglion neurons (SGNs), SG explants of 5-day-old rats were treated with increasing concentrations of simvastatin. In addition, SG explants were treated with mevalonate and with the combination of simvastatin and mevalonate. SGN number, length of the neurites, area of nonneuronal supporting cells, and neuronal survival were analyzed. Simvastatin treatment results in a significant dose-dependent decrease of SG neurite number, length of neurites, area of supporting cells, and SG neuronal survival compared to control. Interestingly, treatment with mevalonate in addition to simvastatin increased SG neuronal survival compared to simvastatin treatment only. However, treatment with mevalonate in addition to simvastatin did not influence SG neurite number, length of neurites, and area of supporting cells compared to simvastatin treatment only. Our results suggest a neurotoxic effect of simvastatin on SGNs in vitro. Neurotoxicity seems to be at least partially mediated by the mevalonate pathway. Therefore, caution is warranted to use simvastatin as a potential otoprotective drug.