Cargando…

PBPK Model for Atrazine and Its Chlorotriazine Metabolites in Rat and Human

The previously-published physiologically based pharmacokinetic model for atrazine (ATZ), deisopropylatrazine (DIA), deethylatrazine (DEA), and diaminochlorotriazine (DACT), which collectively comprise the total chlorotriazines (TCT) as represented in this study, was modified to allow for scaling to...

Descripción completa

Detalles Bibliográficos
Autores principales: Campbell, Jerry L., Andersen, Melvin E., Hinderliter, Paul M., Yi, Kun Don, Pastoor, Timothy P., Breckenridge, Charles B., Clewell, Harvey J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809456/
https://www.ncbi.nlm.nih.gov/pubmed/26794140
http://dx.doi.org/10.1093/toxsci/kfw014
Descripción
Sumario:The previously-published physiologically based pharmacokinetic model for atrazine (ATZ), deisopropylatrazine (DIA), deethylatrazine (DEA), and diaminochlorotriazine (DACT), which collectively comprise the total chlorotriazines (TCT) as represented in this study, was modified to allow for scaling to humans. Changes included replacing the fixed dose-dependent oral uptake rates with a method that represented delayed absorption observed in rats administered ATZ as a bolus dose suspended in a methylcellulose vehicle. Rate constants for metabolism of ATZ to DIA and DEA, followed by metabolism of DIA and DEA to DACT were predicted using a compartmental model describing the metabolism of the chlorotriazines by rat and human hepatocytes in vitro. Overall, the model successfully predicted both the 4-day plasma time-course data in rats administered ATZ by bolus dose (3, 10, and 50 mg/kg/day) or in the diet (30, 100, or 500 ppm). Simulated continuous daily exposure of a 55-kg adult female to ATZ at a dose of 1.0 µg/kg/day resulted in steady-state urinary concentrations of 0.6, 1.4, 2.5, and 6.0 µg/L for DEA, DIA, DACT, and TCT, respectively. The TCT (ATZ + DEA + DIA + DACT) human urinary biomonitoring equivalent concentration following continuous exposure to ATZ at the chronic point of departure (POD = 1.8 mg/kg/day) was 360.6 μg/L.