Cargando…
The Design and Optimization of a Highly Sensitive and Overload-Resistant Piezoresistive Pressure Sensor
A piezoresistive pressure sensor with a beam-membrane-dual-island structure is developed for micro-pressure monitoring in the field of aviation, which requires great sensitivity and overload resistance capacity. The design, fabrication, and test of the sensor are presented in this paper. By analyzin...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4813923/ https://www.ncbi.nlm.nih.gov/pubmed/27005627 http://dx.doi.org/10.3390/s16030348 |
_version_ | 1782424346272202752 |
---|---|
author | Meng, Xiawei Zhao, Yulong |
author_facet | Meng, Xiawei Zhao, Yulong |
author_sort | Meng, Xiawei |
collection | PubMed |
description | A piezoresistive pressure sensor with a beam-membrane-dual-island structure is developed for micro-pressure monitoring in the field of aviation, which requires great sensitivity and overload resistance capacity. The design, fabrication, and test of the sensor are presented in this paper. By analyzing the stress distribution of sensitive elements using the finite element method, a novel structure incorporating sensitive beams with a traditional bossed diaphragm is built up. The proposed structure proved to be advantageous in terms of high sensitivity and high overload resistance compared with the conventional bossed diaphragm and flat diaphragm structures. Curve fittings of surface stress and deflection based on ANSYS simulation results are performed to establish the sensor equations. Fabricated on an n-type single crystal silicon wafer, the sensor chips are wire-bonded to a printed circuit board (PCB) and packaged for experiments. The static and dynamic characteristics are tested and discussed. Experimental results show that the sensor has a sensitivity as high as 17.339 μV/V/Pa in the range of 500 Pa at room temperature, and a high overload resistance of 200 times overpressure. Due to the excellent performance, the sensor can be applied in measuring micro-pressure lower than 500 Pa. |
format | Online Article Text |
id | pubmed-4813923 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-48139232016-04-06 The Design and Optimization of a Highly Sensitive and Overload-Resistant Piezoresistive Pressure Sensor Meng, Xiawei Zhao, Yulong Sensors (Basel) Article A piezoresistive pressure sensor with a beam-membrane-dual-island structure is developed for micro-pressure monitoring in the field of aviation, which requires great sensitivity and overload resistance capacity. The design, fabrication, and test of the sensor are presented in this paper. By analyzing the stress distribution of sensitive elements using the finite element method, a novel structure incorporating sensitive beams with a traditional bossed diaphragm is built up. The proposed structure proved to be advantageous in terms of high sensitivity and high overload resistance compared with the conventional bossed diaphragm and flat diaphragm structures. Curve fittings of surface stress and deflection based on ANSYS simulation results are performed to establish the sensor equations. Fabricated on an n-type single crystal silicon wafer, the sensor chips are wire-bonded to a printed circuit board (PCB) and packaged for experiments. The static and dynamic characteristics are tested and discussed. Experimental results show that the sensor has a sensitivity as high as 17.339 μV/V/Pa in the range of 500 Pa at room temperature, and a high overload resistance of 200 times overpressure. Due to the excellent performance, the sensor can be applied in measuring micro-pressure lower than 500 Pa. MDPI 2016-03-09 /pmc/articles/PMC4813923/ /pubmed/27005627 http://dx.doi.org/10.3390/s16030348 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Meng, Xiawei Zhao, Yulong The Design and Optimization of a Highly Sensitive and Overload-Resistant Piezoresistive Pressure Sensor |
title | The Design and Optimization of a Highly Sensitive and Overload-Resistant Piezoresistive Pressure Sensor |
title_full | The Design and Optimization of a Highly Sensitive and Overload-Resistant Piezoresistive Pressure Sensor |
title_fullStr | The Design and Optimization of a Highly Sensitive and Overload-Resistant Piezoresistive Pressure Sensor |
title_full_unstemmed | The Design and Optimization of a Highly Sensitive and Overload-Resistant Piezoresistive Pressure Sensor |
title_short | The Design and Optimization of a Highly Sensitive and Overload-Resistant Piezoresistive Pressure Sensor |
title_sort | design and optimization of a highly sensitive and overload-resistant piezoresistive pressure sensor |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4813923/ https://www.ncbi.nlm.nih.gov/pubmed/27005627 http://dx.doi.org/10.3390/s16030348 |
work_keys_str_mv | AT mengxiawei thedesignandoptimizationofahighlysensitiveandoverloadresistantpiezoresistivepressuresensor AT zhaoyulong thedesignandoptimizationofahighlysensitiveandoverloadresistantpiezoresistivepressuresensor AT mengxiawei designandoptimizationofahighlysensitiveandoverloadresistantpiezoresistivepressuresensor AT zhaoyulong designandoptimizationofahighlysensitiveandoverloadresistantpiezoresistivepressuresensor |