Cargando…
Sample size calculation while controlling false discovery rate for differential expression analysis with RNA-sequencing experiments
BACKGROUND: RNA-Sequencing (RNA-seq) experiments have been popularly applied to transcriptome studies in recent years. Such experiments are still relatively costly. As a result, RNA-seq experiments often employ a small number of replicates. Power analysis and sample size calculation are challenging...
Autores principales: | Bi, Ran, Liu, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4815167/ https://www.ncbi.nlm.nih.gov/pubmed/27029470 http://dx.doi.org/10.1186/s12859-016-0994-9 |
Ejemplares similares
-
Impact of adaptive filtering on power and false discovery rate in RNA-seq experiments
por: Zehetmayer, Sonja, et al.
Publicado: (2022) -
Sample size calculation
por: Kadam, Prashant, et al.
Publicado: (2010) -
Grouped False-Discovery Rate for Removing the Gene-Set-Level Bias of RNA-seq
por: Yang, Tae Young, et al.
Publicado: (2013) -
Sample size and power calculations for detecting changes in malaria transmission using antibody seroconversion rate
por: Sepúlveda, Nuno, et al.
Publicado: (2015) -
Principles of sample size calculation
por: Gogtay, Nithya J
Publicado: (2010)