Cargando…
Inhibition of mTOR activity in diabetes mellitus reduces proteinuria but not renal accumulation of hyaluronan
Objectives. Accumulation of extracellular matrix (ECM) components is an early sign of diabetic nephropathy. Also the glycosaminoglycan hyaluronan (HA) is elevated in the renal interstitium during experimental diabetes. The mammalian target of rapamycin (mTOR) pathway participates in the signaling of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Informa Healthcare
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4816883/ https://www.ncbi.nlm.nih.gov/pubmed/26175092 http://dx.doi.org/10.3109/03009734.2015.1062442 |
_version_ | 1782424794625474560 |
---|---|
author | Stridh, Sara Palm, Fredrik Takahashi, Tomoko Ikegami-Kawai, Mayumi Hansell, Peter |
author_facet | Stridh, Sara Palm, Fredrik Takahashi, Tomoko Ikegami-Kawai, Mayumi Hansell, Peter |
author_sort | Stridh, Sara |
collection | PubMed |
description | Objectives. Accumulation of extracellular matrix (ECM) components is an early sign of diabetic nephropathy. Also the glycosaminoglycan hyaluronan (HA) is elevated in the renal interstitium during experimental diabetes. The mammalian target of rapamycin (mTOR) pathway participates in the signaling of hyperglycemia-induced ECM accumulation in the kidney, but this has not yet been investigated for HA. We hypothesized that interstitial HA accumulation during diabetes may involve mTOR activation. Methods. Diabetic rats (6 weeks post-streptozotocin (STZ)) were treated with rapamycin to inhibit mTOR or vehicle for 2 additional weeks. Kidney function (glomerular filtration rate, renal blood flow, urine output) and regional renal HA content were thereafter analyzed. The ability of the animals to respond to desmopressin was also tested. Results. Diabetic animals displayed hyperglycemia, proteinuria, hyperfiltration, renal hypertrophy, increased diuresis with reduced urine osmolality, and reduced weight gain. Cortical and outer medullary HA was elevated in diabetic rats. Urine hyaluronidase activity was almost doubled in diabetic rats compared with controls. The ability to respond to desmopressin was absent in diabetic rats. Renal blood flow and arterial blood pressure were unaffected by the diabetic state. In diabetic rats treated with rapamycin the proteinuria was reduced by 32%, while all other parameters were unaffected. Conclusion. Regional renal accumulation of the ECM component HA is not sensitive to mTOR inhibition by rapamycin, while proteinuria is reduced in established STZ-induced diabetes. Whether the diabetes-induced renal accumulation of HA occurs through different pathways than other ECM components, or is irreversible after being established, remains to be shown. |
format | Online Article Text |
id | pubmed-4816883 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Informa Healthcare |
record_format | MEDLINE/PubMed |
spelling | pubmed-48168832016-04-25 Inhibition of mTOR activity in diabetes mellitus reduces proteinuria but not renal accumulation of hyaluronan Stridh, Sara Palm, Fredrik Takahashi, Tomoko Ikegami-Kawai, Mayumi Hansell, Peter Ups J Med Sci Original Articles Objectives. Accumulation of extracellular matrix (ECM) components is an early sign of diabetic nephropathy. Also the glycosaminoglycan hyaluronan (HA) is elevated in the renal interstitium during experimental diabetes. The mammalian target of rapamycin (mTOR) pathway participates in the signaling of hyperglycemia-induced ECM accumulation in the kidney, but this has not yet been investigated for HA. We hypothesized that interstitial HA accumulation during diabetes may involve mTOR activation. Methods. Diabetic rats (6 weeks post-streptozotocin (STZ)) were treated with rapamycin to inhibit mTOR or vehicle for 2 additional weeks. Kidney function (glomerular filtration rate, renal blood flow, urine output) and regional renal HA content were thereafter analyzed. The ability of the animals to respond to desmopressin was also tested. Results. Diabetic animals displayed hyperglycemia, proteinuria, hyperfiltration, renal hypertrophy, increased diuresis with reduced urine osmolality, and reduced weight gain. Cortical and outer medullary HA was elevated in diabetic rats. Urine hyaluronidase activity was almost doubled in diabetic rats compared with controls. The ability to respond to desmopressin was absent in diabetic rats. Renal blood flow and arterial blood pressure were unaffected by the diabetic state. In diabetic rats treated with rapamycin the proteinuria was reduced by 32%, while all other parameters were unaffected. Conclusion. Regional renal accumulation of the ECM component HA is not sensitive to mTOR inhibition by rapamycin, while proteinuria is reduced in established STZ-induced diabetes. Whether the diabetes-induced renal accumulation of HA occurs through different pathways than other ECM components, or is irreversible after being established, remains to be shown. Informa Healthcare 2015-11 /pmc/articles/PMC4816883/ /pubmed/26175092 http://dx.doi.org/10.3109/03009734.2015.1062442 Text en © Informa Healthcare 2015 http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the CC-BY-NC-ND 3.0 License which permits users to download and share the article for non-commercial purposes, so long as the article is reproduced in the whole without changes, and provided the original source is credited. |
spellingShingle | Original Articles Stridh, Sara Palm, Fredrik Takahashi, Tomoko Ikegami-Kawai, Mayumi Hansell, Peter Inhibition of mTOR activity in diabetes mellitus reduces proteinuria but not renal accumulation of hyaluronan |
title | Inhibition of mTOR activity in diabetes mellitus reduces proteinuria but not renal accumulation of hyaluronan |
title_full | Inhibition of mTOR activity in diabetes mellitus reduces proteinuria but not renal accumulation of hyaluronan |
title_fullStr | Inhibition of mTOR activity in diabetes mellitus reduces proteinuria but not renal accumulation of hyaluronan |
title_full_unstemmed | Inhibition of mTOR activity in diabetes mellitus reduces proteinuria but not renal accumulation of hyaluronan |
title_short | Inhibition of mTOR activity in diabetes mellitus reduces proteinuria but not renal accumulation of hyaluronan |
title_sort | inhibition of mtor activity in diabetes mellitus reduces proteinuria but not renal accumulation of hyaluronan |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4816883/ https://www.ncbi.nlm.nih.gov/pubmed/26175092 http://dx.doi.org/10.3109/03009734.2015.1062442 |
work_keys_str_mv | AT stridhsara inhibitionofmtoractivityindiabetesmellitusreducesproteinuriabutnotrenalaccumulationofhyaluronan AT palmfredrik inhibitionofmtoractivityindiabetesmellitusreducesproteinuriabutnotrenalaccumulationofhyaluronan AT takahashitomoko inhibitionofmtoractivityindiabetesmellitusreducesproteinuriabutnotrenalaccumulationofhyaluronan AT ikegamikawaimayumi inhibitionofmtoractivityindiabetesmellitusreducesproteinuriabutnotrenalaccumulationofhyaluronan AT hansellpeter inhibitionofmtoractivityindiabetesmellitusreducesproteinuriabutnotrenalaccumulationofhyaluronan |