Cargando…
JAM: A Scalable Bayesian Framework for Joint Analysis of Marginal SNP Effects
Recently, large scale genome‐wide association study (GWAS) meta‐analyses have boosted the number of known signals for some traits into the tens and hundreds. Typically, however, variants are only analysed one‐at‐a‐time. This complicates the ability of fine‐mapping to identify a small set of SNPs for...
Autores principales: | Newcombe, Paul J., Conti, David V., Richardson, Sylvia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4817278/ https://www.ncbi.nlm.nih.gov/pubmed/27027514 http://dx.doi.org/10.1002/gepi.21953 |
Ejemplares similares
-
A scalable, knowledge-based analysis framework for genetic association studies
por: Baurley, James W, et al.
Publicado: (2013) -
Scalable Bayesian phylogenetics
por: Fisher, Alexander A., et al.
Publicado: (2022) -
Bayesian variable selection with a pleiotropic loss function in Mendelian randomization
por: Gkatzionis, Apostolos, et al.
Publicado: (2021) -
Patterns of scalable Bayesian inference
por: Angelino, Elaine, et al.
Publicado: (2016) -
Junctional Adhesion Molecules (JAMs): The JAM-Integrin Connection
por: Kummer, Daniel, et al.
Publicado: (2018)