Cargando…
Parp mutations protect against mitochondrial dysfunction and neurodegeneration in a PARKIN model of Parkinson's disease
The co-enzyme nicotinamide adenine dinucleotide (NAD(+)) is an essential co-factor for cellular energy generation in mitochondria as well as for DNA repair mechanisms in the cell nucleus involving NAD(+)-consuming poly (ADP-ribose) polymerases (PARPs). Mitochondrial function is compromised in animal...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4823968/ https://www.ncbi.nlm.nih.gov/pubmed/27031963 http://dx.doi.org/10.1038/cddis.2016.72 |
Sumario: | The co-enzyme nicotinamide adenine dinucleotide (NAD(+)) is an essential co-factor for cellular energy generation in mitochondria as well as for DNA repair mechanisms in the cell nucleus involving NAD(+)-consuming poly (ADP-ribose) polymerases (PARPs). Mitochondrial function is compromised in animal models of Parkinson's disease (PD) associated with PARKIN mutations. Here, we uncovered alterations in NAD(+) salvage metabolism in Drosophila parkin mutants. We show that a dietary supplementation with the NAD(+) precursor nicotinamide rescues mitochondrial function and is neuroprotective. Further, by mutating Parp in parkin mutants, we show that this increases levels of NAD(+) and its salvage metabolites. This also rescues mitochondrial function and suppresses dopaminergic neurodegeneration. We conclude that strategies to enhance NAD(+) levels by administration of dietary precursors or the inhibition of NAD(+)-dependent enzymes, such as PARP, that compete with mitochondria for NAD(+) could be used to delay neuronal death associated with mitochondrial dysfunction. |
---|