Cargando…

Recognition of the bacterial alarmone ZMP through long-distance association of two RNA sub-domains

The bacterial alarmone 5-aminoimidazole-4-carboxamide riboside 5'-triphosphate (ZTP), derived from the monophosphorylated purine precursor ZMP, accumulates during folate starvation. ZTP regulates genes involved in purine and folate metabolism through a cognate riboswitch. The linker connecting...

Descripción completa

Detalles Bibliográficos
Autores principales: Jones, Christopher P., Ferré-D’Amaré, Adrian R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824399/
https://www.ncbi.nlm.nih.gov/pubmed/26280533
http://dx.doi.org/10.1038/nsmb.3073
Descripción
Sumario:The bacterial alarmone 5-aminoimidazole-4-carboxamide riboside 5'-triphosphate (ZTP), derived from the monophosphorylated purine precursor ZMP, accumulates during folate starvation. ZTP regulates genes involved in purine and folate metabolism through a cognate riboswitch. The linker connecting this riboswitch’s two sub-domains varies in length by over 100 nucleotides. We report the co-crystal structure of the Fusobacterium ulcerans riboswitch bound to ZMP, which spans the two sub-domains whose interface also comprises a pseudoknot and ribose zipper. The riboswitch recognizes the carboxamide oxygen of ZMP through an unprecedented inner-sphere coordination with a Mg(2+) ion. We demonstrate that the affinity of the riboswitch for ZMP is modulated by the linker length. Notably, ZMP can bind to the two sub-domains together even when synthesized as separate RNAs. The ZTP riboswitch demonstrates how specific small-molecule binding can drive association of distant non-coding RNA domains to regulate gene expression.