Cargando…
Deactivation of the GATA Transcription Factor ELT-2 Is a Major Driver of Normal Aging in C. elegans
To understand the molecular processes underlying aging, we screened modENCODE ChIP-seq data to identify transcription factors that bind to age-regulated genes in C. elegans. The most significant hit was the GATA transcription factor encoded by elt-2, which is responsible for inducing expression of i...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829211/ https://www.ncbi.nlm.nih.gov/pubmed/27070429 http://dx.doi.org/10.1371/journal.pgen.1005956 |
Sumario: | To understand the molecular processes underlying aging, we screened modENCODE ChIP-seq data to identify transcription factors that bind to age-regulated genes in C. elegans. The most significant hit was the GATA transcription factor encoded by elt-2, which is responsible for inducing expression of intestinal genes during embryogenesis. Expression of ELT-2 decreases during aging, beginning in middle age. We identified genes regulated by ELT-2 in the intestine during embryogenesis, and then showed that these developmental genes markedly decrease in expression as worms grow old. Overexpression of elt-2 extends lifespan and slows the rate of gene expression changes that occur during normal aging. Thus, our results identify the developmental regulator ELT-2 as a major driver of normal aging in C. elegans. |
---|