Cargando…

Carrier-induced transient defect mechanism for non-radiative recombination in InGaN light-emitting devices

Non-radiative recombination (NRR) of excited carriers poses a serious challenge to optoelectronic device efficiency. Understanding the mechanism is thus crucial to defect physics and technological applications. Here, by using first-principles calculations, we propose a new NRR mechanism, where excit...

Descripción completa

Detalles Bibliográficos
Autores principales: Bang, Junhyeok, Sun, Y. Y., Song, Jung-Hoon, Zhang, S. B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4830943/
https://www.ncbi.nlm.nih.gov/pubmed/27075818
http://dx.doi.org/10.1038/srep24404
Descripción
Sumario:Non-radiative recombination (NRR) of excited carriers poses a serious challenge to optoelectronic device efficiency. Understanding the mechanism is thus crucial to defect physics and technological applications. Here, by using first-principles calculations, we propose a new NRR mechanism, where excited carriers recombine via a Frenkel-pair (FP) defect formation. While in the ground state the FP is high in energy and is unlikely to form, in the electronic excited states its formation is enabled by a strong electron-phonon coupling of the excited carriers. This NRR mechanism is expected to be general for wide-gap semiconductors, rather than being limited to InGaN-based light emitting devices.