Cargando…

AIG1 and ADTRP are Atypical Integral Membrane Hydrolases that Degrade Bioactive FAHFAs

Enzyme classes may contain outlier members that share mechanistic, but not sequence or structural relatedness with more common representatives. The functional annotation of such exceptional proteins can be challenging. Here, we use activity-based profiling to discover that the poorly characterized m...

Descripción completa

Detalles Bibliográficos
Autores principales: Parsons, William H, Kolar, Matthew J, Kamat, Siddhesh S, Cognetta, Armand B, Hulce, Jonathan J, Saez, Enrique, Kahn, Barbara B, Saghatelian, Alan, Cravatt, Benjamin F
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4837090/
https://www.ncbi.nlm.nih.gov/pubmed/27018888
http://dx.doi.org/10.1038/nchembio.2051
_version_ 1782427793689149440
author Parsons, William H
Kolar, Matthew J
Kamat, Siddhesh S
Cognetta, Armand B
Hulce, Jonathan J
Saez, Enrique
Kahn, Barbara B
Saghatelian, Alan
Cravatt, Benjamin F
author_facet Parsons, William H
Kolar, Matthew J
Kamat, Siddhesh S
Cognetta, Armand B
Hulce, Jonathan J
Saez, Enrique
Kahn, Barbara B
Saghatelian, Alan
Cravatt, Benjamin F
author_sort Parsons, William H
collection PubMed
description Enzyme classes may contain outlier members that share mechanistic, but not sequence or structural relatedness with more common representatives. The functional annotation of such exceptional proteins can be challenging. Here, we use activity-based profiling to discover that the poorly characterized multipass transmembrane proteins AIG1 and ADTRP are atypical hydrolytic enzymes that depend on conserved threonine and histidine residues for catalysis. Both AIG1 and ADTRP hydrolyze bioactive fatty-acid esters of hydroxy-fatty acids (FAHFAs), but not other major classes of lipids. We discover multiple cell-active, covalent inhibitors of AIG1 and show that these agents block FAHFA hydrolysis in mammalian cells. These results indicate that AIG1 and ADTRP are founding members of an evolutionarily conserved class of transmembrane threonine hydrolases involved in bioactive lipid metabolism. More generally, our findings demonstrate how chemical proteomics can excavate potential cases of convergent/parallel protein evolution that defy conventional sequence- and structure-based predictions.
format Online
Article
Text
id pubmed-4837090
institution National Center for Biotechnology Information
language English
publishDate 2016
record_format MEDLINE/PubMed
spelling pubmed-48370902016-09-28 AIG1 and ADTRP are Atypical Integral Membrane Hydrolases that Degrade Bioactive FAHFAs Parsons, William H Kolar, Matthew J Kamat, Siddhesh S Cognetta, Armand B Hulce, Jonathan J Saez, Enrique Kahn, Barbara B Saghatelian, Alan Cravatt, Benjamin F Nat Chem Biol Article Enzyme classes may contain outlier members that share mechanistic, but not sequence or structural relatedness with more common representatives. The functional annotation of such exceptional proteins can be challenging. Here, we use activity-based profiling to discover that the poorly characterized multipass transmembrane proteins AIG1 and ADTRP are atypical hydrolytic enzymes that depend on conserved threonine and histidine residues for catalysis. Both AIG1 and ADTRP hydrolyze bioactive fatty-acid esters of hydroxy-fatty acids (FAHFAs), but not other major classes of lipids. We discover multiple cell-active, covalent inhibitors of AIG1 and show that these agents block FAHFA hydrolysis in mammalian cells. These results indicate that AIG1 and ADTRP are founding members of an evolutionarily conserved class of transmembrane threonine hydrolases involved in bioactive lipid metabolism. More generally, our findings demonstrate how chemical proteomics can excavate potential cases of convergent/parallel protein evolution that defy conventional sequence- and structure-based predictions. 2016-03-28 2016-05 /pmc/articles/PMC4837090/ /pubmed/27018888 http://dx.doi.org/10.1038/nchembio.2051 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Parsons, William H
Kolar, Matthew J
Kamat, Siddhesh S
Cognetta, Armand B
Hulce, Jonathan J
Saez, Enrique
Kahn, Barbara B
Saghatelian, Alan
Cravatt, Benjamin F
AIG1 and ADTRP are Atypical Integral Membrane Hydrolases that Degrade Bioactive FAHFAs
title AIG1 and ADTRP are Atypical Integral Membrane Hydrolases that Degrade Bioactive FAHFAs
title_full AIG1 and ADTRP are Atypical Integral Membrane Hydrolases that Degrade Bioactive FAHFAs
title_fullStr AIG1 and ADTRP are Atypical Integral Membrane Hydrolases that Degrade Bioactive FAHFAs
title_full_unstemmed AIG1 and ADTRP are Atypical Integral Membrane Hydrolases that Degrade Bioactive FAHFAs
title_short AIG1 and ADTRP are Atypical Integral Membrane Hydrolases that Degrade Bioactive FAHFAs
title_sort aig1 and adtrp are atypical integral membrane hydrolases that degrade bioactive fahfas
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4837090/
https://www.ncbi.nlm.nih.gov/pubmed/27018888
http://dx.doi.org/10.1038/nchembio.2051
work_keys_str_mv AT parsonswilliamh aig1andadtrpareatypicalintegralmembranehydrolasesthatdegradebioactivefahfas
AT kolarmatthewj aig1andadtrpareatypicalintegralmembranehydrolasesthatdegradebioactivefahfas
AT kamatsiddheshs aig1andadtrpareatypicalintegralmembranehydrolasesthatdegradebioactivefahfas
AT cognettaarmandb aig1andadtrpareatypicalintegralmembranehydrolasesthatdegradebioactivefahfas
AT hulcejonathanj aig1andadtrpareatypicalintegralmembranehydrolasesthatdegradebioactivefahfas
AT saezenrique aig1andadtrpareatypicalintegralmembranehydrolasesthatdegradebioactivefahfas
AT kahnbarbarab aig1andadtrpareatypicalintegralmembranehydrolasesthatdegradebioactivefahfas
AT saghatelianalan aig1andadtrpareatypicalintegralmembranehydrolasesthatdegradebioactivefahfas
AT cravattbenjaminf aig1andadtrpareatypicalintegralmembranehydrolasesthatdegradebioactivefahfas