Cargando…

Using expected sequence features to improve basecalling accuracy of amplicon pyrosequencing data

BACKGROUND: Amplicon pyrosequencing targets a known genetic region and thus inherently produces reads highly anticipated to have certain features, such as conserved nucleotide sequence, and in the case of protein coding DNA, an open reading frame. Pyrosequencing errors, consisting mainly of nucleoti...

Descripción completa

Detalles Bibliográficos
Autores principales: Rask, Thomas S., Petersen, Bent, Chen, Donald S., Day, Karen P., Pedersen, Anders Gorm
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841065/
https://www.ncbi.nlm.nih.gov/pubmed/27102804
http://dx.doi.org/10.1186/s12859-016-1032-7
_version_ 1782428341528166400
author Rask, Thomas S.
Petersen, Bent
Chen, Donald S.
Day, Karen P.
Pedersen, Anders Gorm
author_facet Rask, Thomas S.
Petersen, Bent
Chen, Donald S.
Day, Karen P.
Pedersen, Anders Gorm
author_sort Rask, Thomas S.
collection PubMed
description BACKGROUND: Amplicon pyrosequencing targets a known genetic region and thus inherently produces reads highly anticipated to have certain features, such as conserved nucleotide sequence, and in the case of protein coding DNA, an open reading frame. Pyrosequencing errors, consisting mainly of nucleotide insertions and deletions, are on the other hand likely to disrupt open reading frames. Such an inverse relationship between errors and expectation based on prior knowledge can be used advantageously to guide the process known as basecalling, i.e. the inference of nucleotide sequence from raw sequencing data. RESULTS: The new basecalling method described here, named Multipass, implements a probabilistic framework for working with the raw flowgrams obtained by pyrosequencing. For each sequence variant Multipass calculates the likelihood and nucleotide sequence of several most likely sequences given the flowgram data. This probabilistic approach enables integration of basecalling into a larger model where other parameters can be incorporated, such as the likelihood for observing a full-length open reading frame at the targeted region. We apply the method to 454 amplicon pyrosequencing data obtained from a malaria virulence gene family, where Multipass generates 20 % more error-free sequences than current state of the art methods, and provides sequence characteristics that allow generation of a set of high confidence error-free sequences. CONCLUSIONS: This novel method can be used to increase accuracy of existing and future amplicon sequencing data, particularly where extensive prior knowledge is available about the obtained sequences, for example in analysis of the immunoglobulin VDJ region where Multipass can be combined with a model for the known recombining germline genes. Multipass is available for Roche 454 data at http://www.cbs.dtu.dk/services/MultiPass-1.0, and the concept can potentially be implemented for other sequencing technologies as well. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-016-1032-7) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4841065
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-48410652016-04-23 Using expected sequence features to improve basecalling accuracy of amplicon pyrosequencing data Rask, Thomas S. Petersen, Bent Chen, Donald S. Day, Karen P. Pedersen, Anders Gorm BMC Bioinformatics Methodology Article BACKGROUND: Amplicon pyrosequencing targets a known genetic region and thus inherently produces reads highly anticipated to have certain features, such as conserved nucleotide sequence, and in the case of protein coding DNA, an open reading frame. Pyrosequencing errors, consisting mainly of nucleotide insertions and deletions, are on the other hand likely to disrupt open reading frames. Such an inverse relationship between errors and expectation based on prior knowledge can be used advantageously to guide the process known as basecalling, i.e. the inference of nucleotide sequence from raw sequencing data. RESULTS: The new basecalling method described here, named Multipass, implements a probabilistic framework for working with the raw flowgrams obtained by pyrosequencing. For each sequence variant Multipass calculates the likelihood and nucleotide sequence of several most likely sequences given the flowgram data. This probabilistic approach enables integration of basecalling into a larger model where other parameters can be incorporated, such as the likelihood for observing a full-length open reading frame at the targeted region. We apply the method to 454 amplicon pyrosequencing data obtained from a malaria virulence gene family, where Multipass generates 20 % more error-free sequences than current state of the art methods, and provides sequence characteristics that allow generation of a set of high confidence error-free sequences. CONCLUSIONS: This novel method can be used to increase accuracy of existing and future amplicon sequencing data, particularly where extensive prior knowledge is available about the obtained sequences, for example in analysis of the immunoglobulin VDJ region where Multipass can be combined with a model for the known recombining germline genes. Multipass is available for Roche 454 data at http://www.cbs.dtu.dk/services/MultiPass-1.0, and the concept can potentially be implemented for other sequencing technologies as well. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-016-1032-7) contains supplementary material, which is available to authorized users. BioMed Central 2016-04-22 /pmc/articles/PMC4841065/ /pubmed/27102804 http://dx.doi.org/10.1186/s12859-016-1032-7 Text en © Rask et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Methodology Article
Rask, Thomas S.
Petersen, Bent
Chen, Donald S.
Day, Karen P.
Pedersen, Anders Gorm
Using expected sequence features to improve basecalling accuracy of amplicon pyrosequencing data
title Using expected sequence features to improve basecalling accuracy of amplicon pyrosequencing data
title_full Using expected sequence features to improve basecalling accuracy of amplicon pyrosequencing data
title_fullStr Using expected sequence features to improve basecalling accuracy of amplicon pyrosequencing data
title_full_unstemmed Using expected sequence features to improve basecalling accuracy of amplicon pyrosequencing data
title_short Using expected sequence features to improve basecalling accuracy of amplicon pyrosequencing data
title_sort using expected sequence features to improve basecalling accuracy of amplicon pyrosequencing data
topic Methodology Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841065/
https://www.ncbi.nlm.nih.gov/pubmed/27102804
http://dx.doi.org/10.1186/s12859-016-1032-7
work_keys_str_mv AT raskthomass usingexpectedsequencefeaturestoimprovebasecallingaccuracyofampliconpyrosequencingdata
AT petersenbent usingexpectedsequencefeaturestoimprovebasecallingaccuracyofampliconpyrosequencingdata
AT chendonalds usingexpectedsequencefeaturestoimprovebasecallingaccuracyofampliconpyrosequencingdata
AT daykarenp usingexpectedsequencefeaturestoimprovebasecallingaccuracyofampliconpyrosequencingdata
AT pedersenandersgorm usingexpectedsequencefeaturestoimprovebasecallingaccuracyofampliconpyrosequencingdata