Cargando…

Non-equilibrium induction of tin in germanium: towards direct bandgap Ge(1−x)Sn(x) nanowires

The development of non-equilibrium group IV nanoscale alloys is critical to achieving new functionalities, such as the formation of a direct bandgap in a conventional indirect bandgap elemental semiconductor. Here, we describe the fabrication of uniform diameter, direct bandgap Ge(1−x)Sn(x) alloy na...

Descripción completa

Detalles Bibliográficos
Autores principales: Biswas, Subhajit, Doherty, Jessica, Saladukha, Dzianis, Ramasse, Quentin, Majumdar, Dipanwita, Upmanyu, Moneesh, Singha, Achintya, Ochalski, Tomasz, Morris, Michael A., Holmes, Justin D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4843103/
https://www.ncbi.nlm.nih.gov/pubmed/27095012
http://dx.doi.org/10.1038/ncomms11405
_version_ 1782428632049778688
author Biswas, Subhajit
Doherty, Jessica
Saladukha, Dzianis
Ramasse, Quentin
Majumdar, Dipanwita
Upmanyu, Moneesh
Singha, Achintya
Ochalski, Tomasz
Morris, Michael A.
Holmes, Justin D.
author_facet Biswas, Subhajit
Doherty, Jessica
Saladukha, Dzianis
Ramasse, Quentin
Majumdar, Dipanwita
Upmanyu, Moneesh
Singha, Achintya
Ochalski, Tomasz
Morris, Michael A.
Holmes, Justin D.
author_sort Biswas, Subhajit
collection PubMed
description The development of non-equilibrium group IV nanoscale alloys is critical to achieving new functionalities, such as the formation of a direct bandgap in a conventional indirect bandgap elemental semiconductor. Here, we describe the fabrication of uniform diameter, direct bandgap Ge(1−x)Sn(x) alloy nanowires, with a Sn incorporation up to 9.2 at.%, far in excess of the equilibrium solubility of Sn in bulk Ge, through a conventional catalytic bottom-up growth paradigm using noble metal and metal alloy catalysts. Metal alloy catalysts permitted a greater inclusion of Sn in Ge nanowires compared with conventional Au catalysts, when used during vapour–liquid–solid growth. The addition of an annealing step close to the Ge-Sn eutectic temperature (230 °C) during cool-down, further facilitated the excessive dissolution of Sn in the nanowires. Sn was distributed throughout the Ge nanowire lattice with no metallic Sn segregation or precipitation at the surface or within the bulk of the nanowires. The non-equilibrium incorporation of Sn into the Ge nanowires can be understood in terms of a kinetic trapping model for impurity incorporation at the triple-phase boundary during growth.
format Online
Article
Text
id pubmed-4843103
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-48431032016-05-05 Non-equilibrium induction of tin in germanium: towards direct bandgap Ge(1−x)Sn(x) nanowires Biswas, Subhajit Doherty, Jessica Saladukha, Dzianis Ramasse, Quentin Majumdar, Dipanwita Upmanyu, Moneesh Singha, Achintya Ochalski, Tomasz Morris, Michael A. Holmes, Justin D. Nat Commun Article The development of non-equilibrium group IV nanoscale alloys is critical to achieving new functionalities, such as the formation of a direct bandgap in a conventional indirect bandgap elemental semiconductor. Here, we describe the fabrication of uniform diameter, direct bandgap Ge(1−x)Sn(x) alloy nanowires, with a Sn incorporation up to 9.2 at.%, far in excess of the equilibrium solubility of Sn in bulk Ge, through a conventional catalytic bottom-up growth paradigm using noble metal and metal alloy catalysts. Metal alloy catalysts permitted a greater inclusion of Sn in Ge nanowires compared with conventional Au catalysts, when used during vapour–liquid–solid growth. The addition of an annealing step close to the Ge-Sn eutectic temperature (230 °C) during cool-down, further facilitated the excessive dissolution of Sn in the nanowires. Sn was distributed throughout the Ge nanowire lattice with no metallic Sn segregation or precipitation at the surface or within the bulk of the nanowires. The non-equilibrium incorporation of Sn into the Ge nanowires can be understood in terms of a kinetic trapping model for impurity incorporation at the triple-phase boundary during growth. Nature Publishing Group 2016-04-20 /pmc/articles/PMC4843103/ /pubmed/27095012 http://dx.doi.org/10.1038/ncomms11405 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Biswas, Subhajit
Doherty, Jessica
Saladukha, Dzianis
Ramasse, Quentin
Majumdar, Dipanwita
Upmanyu, Moneesh
Singha, Achintya
Ochalski, Tomasz
Morris, Michael A.
Holmes, Justin D.
Non-equilibrium induction of tin in germanium: towards direct bandgap Ge(1−x)Sn(x) nanowires
title Non-equilibrium induction of tin in germanium: towards direct bandgap Ge(1−x)Sn(x) nanowires
title_full Non-equilibrium induction of tin in germanium: towards direct bandgap Ge(1−x)Sn(x) nanowires
title_fullStr Non-equilibrium induction of tin in germanium: towards direct bandgap Ge(1−x)Sn(x) nanowires
title_full_unstemmed Non-equilibrium induction of tin in germanium: towards direct bandgap Ge(1−x)Sn(x) nanowires
title_short Non-equilibrium induction of tin in germanium: towards direct bandgap Ge(1−x)Sn(x) nanowires
title_sort non-equilibrium induction of tin in germanium: towards direct bandgap ge(1−x)sn(x) nanowires
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4843103/
https://www.ncbi.nlm.nih.gov/pubmed/27095012
http://dx.doi.org/10.1038/ncomms11405
work_keys_str_mv AT biswassubhajit nonequilibriuminductionoftiningermaniumtowardsdirectbandgapge1xsnxnanowires
AT dohertyjessica nonequilibriuminductionoftiningermaniumtowardsdirectbandgapge1xsnxnanowires
AT saladukhadzianis nonequilibriuminductionoftiningermaniumtowardsdirectbandgapge1xsnxnanowires
AT ramassequentin nonequilibriuminductionoftiningermaniumtowardsdirectbandgapge1xsnxnanowires
AT majumdardipanwita nonequilibriuminductionoftiningermaniumtowardsdirectbandgapge1xsnxnanowires
AT upmanyumoneesh nonequilibriuminductionoftiningermaniumtowardsdirectbandgapge1xsnxnanowires
AT singhaachintya nonequilibriuminductionoftiningermaniumtowardsdirectbandgapge1xsnxnanowires
AT ochalskitomasz nonequilibriuminductionoftiningermaniumtowardsdirectbandgapge1xsnxnanowires
AT morrismichaela nonequilibriuminductionoftiningermaniumtowardsdirectbandgapge1xsnxnanowires
AT holmesjustind nonequilibriuminductionoftiningermaniumtowardsdirectbandgapge1xsnxnanowires