Cargando…
Non-equilibrium induction of tin in germanium: towards direct bandgap Ge(1−x)Sn(x) nanowires
The development of non-equilibrium group IV nanoscale alloys is critical to achieving new functionalities, such as the formation of a direct bandgap in a conventional indirect bandgap elemental semiconductor. Here, we describe the fabrication of uniform diameter, direct bandgap Ge(1−x)Sn(x) alloy na...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4843103/ https://www.ncbi.nlm.nih.gov/pubmed/27095012 http://dx.doi.org/10.1038/ncomms11405 |
_version_ | 1782428632049778688 |
---|---|
author | Biswas, Subhajit Doherty, Jessica Saladukha, Dzianis Ramasse, Quentin Majumdar, Dipanwita Upmanyu, Moneesh Singha, Achintya Ochalski, Tomasz Morris, Michael A. Holmes, Justin D. |
author_facet | Biswas, Subhajit Doherty, Jessica Saladukha, Dzianis Ramasse, Quentin Majumdar, Dipanwita Upmanyu, Moneesh Singha, Achintya Ochalski, Tomasz Morris, Michael A. Holmes, Justin D. |
author_sort | Biswas, Subhajit |
collection | PubMed |
description | The development of non-equilibrium group IV nanoscale alloys is critical to achieving new functionalities, such as the formation of a direct bandgap in a conventional indirect bandgap elemental semiconductor. Here, we describe the fabrication of uniform diameter, direct bandgap Ge(1−x)Sn(x) alloy nanowires, with a Sn incorporation up to 9.2 at.%, far in excess of the equilibrium solubility of Sn in bulk Ge, through a conventional catalytic bottom-up growth paradigm using noble metal and metal alloy catalysts. Metal alloy catalysts permitted a greater inclusion of Sn in Ge nanowires compared with conventional Au catalysts, when used during vapour–liquid–solid growth. The addition of an annealing step close to the Ge-Sn eutectic temperature (230 °C) during cool-down, further facilitated the excessive dissolution of Sn in the nanowires. Sn was distributed throughout the Ge nanowire lattice with no metallic Sn segregation or precipitation at the surface or within the bulk of the nanowires. The non-equilibrium incorporation of Sn into the Ge nanowires can be understood in terms of a kinetic trapping model for impurity incorporation at the triple-phase boundary during growth. |
format | Online Article Text |
id | pubmed-4843103 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-48431032016-05-05 Non-equilibrium induction of tin in germanium: towards direct bandgap Ge(1−x)Sn(x) nanowires Biswas, Subhajit Doherty, Jessica Saladukha, Dzianis Ramasse, Quentin Majumdar, Dipanwita Upmanyu, Moneesh Singha, Achintya Ochalski, Tomasz Morris, Michael A. Holmes, Justin D. Nat Commun Article The development of non-equilibrium group IV nanoscale alloys is critical to achieving new functionalities, such as the formation of a direct bandgap in a conventional indirect bandgap elemental semiconductor. Here, we describe the fabrication of uniform diameter, direct bandgap Ge(1−x)Sn(x) alloy nanowires, with a Sn incorporation up to 9.2 at.%, far in excess of the equilibrium solubility of Sn in bulk Ge, through a conventional catalytic bottom-up growth paradigm using noble metal and metal alloy catalysts. Metal alloy catalysts permitted a greater inclusion of Sn in Ge nanowires compared with conventional Au catalysts, when used during vapour–liquid–solid growth. The addition of an annealing step close to the Ge-Sn eutectic temperature (230 °C) during cool-down, further facilitated the excessive dissolution of Sn in the nanowires. Sn was distributed throughout the Ge nanowire lattice with no metallic Sn segregation or precipitation at the surface or within the bulk of the nanowires. The non-equilibrium incorporation of Sn into the Ge nanowires can be understood in terms of a kinetic trapping model for impurity incorporation at the triple-phase boundary during growth. Nature Publishing Group 2016-04-20 /pmc/articles/PMC4843103/ /pubmed/27095012 http://dx.doi.org/10.1038/ncomms11405 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Biswas, Subhajit Doherty, Jessica Saladukha, Dzianis Ramasse, Quentin Majumdar, Dipanwita Upmanyu, Moneesh Singha, Achintya Ochalski, Tomasz Morris, Michael A. Holmes, Justin D. Non-equilibrium induction of tin in germanium: towards direct bandgap Ge(1−x)Sn(x) nanowires |
title | Non-equilibrium induction of tin in germanium: towards direct bandgap
Ge(1−x)Sn(x) nanowires |
title_full | Non-equilibrium induction of tin in germanium: towards direct bandgap
Ge(1−x)Sn(x) nanowires |
title_fullStr | Non-equilibrium induction of tin in germanium: towards direct bandgap
Ge(1−x)Sn(x) nanowires |
title_full_unstemmed | Non-equilibrium induction of tin in germanium: towards direct bandgap
Ge(1−x)Sn(x) nanowires |
title_short | Non-equilibrium induction of tin in germanium: towards direct bandgap
Ge(1−x)Sn(x) nanowires |
title_sort | non-equilibrium induction of tin in germanium: towards direct bandgap
ge(1−x)sn(x) nanowires |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4843103/ https://www.ncbi.nlm.nih.gov/pubmed/27095012 http://dx.doi.org/10.1038/ncomms11405 |
work_keys_str_mv | AT biswassubhajit nonequilibriuminductionoftiningermaniumtowardsdirectbandgapge1xsnxnanowires AT dohertyjessica nonequilibriuminductionoftiningermaniumtowardsdirectbandgapge1xsnxnanowires AT saladukhadzianis nonequilibriuminductionoftiningermaniumtowardsdirectbandgapge1xsnxnanowires AT ramassequentin nonequilibriuminductionoftiningermaniumtowardsdirectbandgapge1xsnxnanowires AT majumdardipanwita nonequilibriuminductionoftiningermaniumtowardsdirectbandgapge1xsnxnanowires AT upmanyumoneesh nonequilibriuminductionoftiningermaniumtowardsdirectbandgapge1xsnxnanowires AT singhaachintya nonequilibriuminductionoftiningermaniumtowardsdirectbandgapge1xsnxnanowires AT ochalskitomasz nonequilibriuminductionoftiningermaniumtowardsdirectbandgapge1xsnxnanowires AT morrismichaela nonequilibriuminductionoftiningermaniumtowardsdirectbandgapge1xsnxnanowires AT holmesjustind nonequilibriuminductionoftiningermaniumtowardsdirectbandgapge1xsnxnanowires |