Cargando…
RUNX1 and its fusion oncoprotein derivative RUNX1-ETO induce senescence-like growth arrest independently of replicative stress
A role for the RUNX genes in cancer failsafe processes has been suggested by their induction of senescence-like growth arrest in primary murine fibroblasts and the failure of RAS-induced senescence in Runx2 deficient cells. We now show that RUNX1 induces senescence in human primary fibroblasts. High...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847638/ https://www.ncbi.nlm.nih.gov/pubmed/19448675 http://dx.doi.org/10.1038/onc.2009.101 |
Sumario: | A role for the RUNX genes in cancer failsafe processes has been suggested by their induction of senescence-like growth arrest in primary murine fibroblasts and the failure of RAS-induced senescence in Runx2 deficient cells. We now show that RUNX1 induces senescence in human primary fibroblasts. High affinity DNA binding is necessary but not sufficient, as shown by the functional attenuation of the truncated RUNX1/AML1a isoform and the TEL-RUNX1 fusion oncoprotein. However, a similar phenotype was potently induced by the RUNX1-ETO (AML1-ETO) oncoprotein, despite its dominant negative potential. Detailed comparison of H-RAS(V12), RUNX1 and RUNX1-ETO senescent phenotypes showed that the RUNX effectors induce earlier growth stasis with only low levels of DNA damage signalling and a lack of chromatin condensation, a marker of irreversible growth arrest. In human fibroblasts, all effectors induced p53 in the absence of detectable p14(ARF), while only RUNX1-ETO induced senescence in p16(INK4a) null cells. Correlation was noted between induction of p53, reactive oxygen species and phospho-p38, while p38(MAPK) inhibition rescued cell growth markedly. These findings reveal a role for replication-independent pathways in RUNX and RUNX1-ETO senescence, and show that the context-specific oncogenic activity of RUNX1 fusion proteins are mirrored in their distinctive interactions with failsafe responses. |
---|