Cargando…

p38 MAPK regulates the Wnt inhibitor Dickkopf-1 in osteotropic prostate cancer cells

The Wnt inhibitor Dickkopf-1 (DKK-1) has been associated with the occurrence of bone metastases in osteotropic prostate cancer by inhibiting osteoblastogenesis. P38 mitogen-activated protein kinase (MAPK) activity is also dysregulated in advanced prostate cancer. However, the impact of p38 MAPK sign...

Descripción completa

Detalles Bibliográficos
Autores principales: Browne, A J, Göbel, A, Thiele, S, Hofbauer, L C, Rauner, M, Rachner, T D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4849158/
https://www.ncbi.nlm.nih.gov/pubmed/26913608
http://dx.doi.org/10.1038/cddis.2016.32
Descripción
Sumario:The Wnt inhibitor Dickkopf-1 (DKK-1) has been associated with the occurrence of bone metastases in osteotropic prostate cancer by inhibiting osteoblastogenesis. P38 mitogen-activated protein kinase (MAPK) activity is also dysregulated in advanced prostate cancer. However, the impact of p38 MAPK signaling on DKK-1 remains unknown. Inhibition of p38 MAPK signaling in osteolytic PC3 cells by small molecule inhibitors (doramapimod, LY2228820 and SB202190) suppressed DKK-1 expression, whereas activation of p38 MAPK by anisomycin increased DKK-1. Further dissection by targeting individual p38 MAPK isoforms with siRNA revealed a stronger role for MAPK11 than MAPK14 and MAPK12 in the regulation of DKK-1. Moreover, prostate cancer cells with a predominantly osteolytic phenotype produced sufficient amounts of DKK-1 to inhibit Wnt3a-induced osteoblastic differentiation in C2C12 cells. This inhibition was blocked directly by neutralizing DKK-1 using a specific antibody and also indirectly by blocking p38 MAPK. Furthermore, tissue expression in human prostate cancer revealed a correlation between p38 MAPK and DKK-1 expression with higher expression in tumor compared with normal tissues. These results reveal that p38 MAPK regulates DKK-1 in prostate cancer and may present a potential target in osteolytic prostate cancers.