Cargando…
Reprogramming Eukaryotic Translation with Ligand-Responsive Synthetic RNA Switches
Protein synthesis in eukaryotes is regulated by diverse reprogramming mechanisms that expand the coding capacity of individual genes. Here, we exploit one such mechanism termed −1 programmed ribosomal frameshifting (−1 PRF) to engineer ligand-responsive RNA switches that regulate protein expression....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4850110/ https://www.ncbi.nlm.nih.gov/pubmed/26999002 http://dx.doi.org/10.1038/nmeth.3807 |
Sumario: | Protein synthesis in eukaryotes is regulated by diverse reprogramming mechanisms that expand the coding capacity of individual genes. Here, we exploit one such mechanism termed −1 programmed ribosomal frameshifting (−1 PRF) to engineer ligand-responsive RNA switches that regulate protein expression. First, efficient −1 PRF stimulatory RNA elements were discovered by in vitro selection; then, ligand-responsive switches were constructed by coupling −1 PRF stimulatory elements to RNA aptamers using rational design and in vivo directed evolution. We demonstrate that −1 PRF switches tightly control the relative stoichiometry of two distinct protein outputs from a single mRNA, exhibiting consistent ligand response across whole populations of cells. Furthermore, −1 PRF switches were applied to build single-mRNA logic gates and an apoptosis module in yeast. Together, these results showcase the potential for harnessing translation-reprogramming mechanisms for synthetic biology, and establish −1 PRF switches as powerful RNA tools for controlling protein synthesis in eukaryotes. |
---|