Cargando…
Loss of ATF3 Promotes Hormone-induced Prostate Carcinogenesis and the Emergence of CK5(+)CK8(+) Epithelial Cells
Steroid sex hormones can induce prostate carcinogenesis, and are thought to contribute to the development of prostate cancer during aging. However, the mechanism for hormone-induced prostate carcinogenesis remains elusive. Here we report that activating transcription factor 3 (ATF3) – a broad stress...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4853303/ https://www.ncbi.nlm.nih.gov/pubmed/26522727 http://dx.doi.org/10.1038/onc.2015.417 |
Sumario: | Steroid sex hormones can induce prostate carcinogenesis, and are thought to contribute to the development of prostate cancer during aging. However, the mechanism for hormone-induced prostate carcinogenesis remains elusive. Here we report that activating transcription factor 3 (ATF3) – a broad stress sensor – suppressed hormone-induced prostate carcinogenesis in mice. While implantation of testosterone and estradiol (T+E(2)) pellets for 2 months in wild-type mice rarely induced prostatic intraepithelial neoplasia (PIN) in dorsal prostates (1 out of 8 mice), loss of ATF3 led to the appearance of not only PIN but also invasive lesions in almost all examined animals. The enhanced carcinogenic effects of hormones on ATF3-deficient prostates did not appear to be caused by a change in estrogen signaling, but were more likely a consequence of elevated androgen signaling that stimulated differentiation of prostatic basal cells into transformation-preferable luminal cells. Indeed, we found that hormone-induced lesions in ATF3-knockout mice often contained cells with both basal and luminal characteristics, such as p63(+) cells (a basal cell marker) showing luminal-like morphology, or cells double-stained with basal (CK5(+)) and luminal (CK8(+)) markers. Consistent with these findings, low ATF3 expression was found to be a poor prognostic marker for prostate cancer in a cohort of 245 patients. Our results thus support that ATF3 is a tumor suppressor in prostate cancer. |
---|