Cargando…
Continuous inhibitory signaling by both SHP-1 and SHIP-1 pathways is required to maintain unresponsiveness of anergic B cells
Many autoreactive B cells persist in the periphery in a state of unresponsiveness called anergy. This unresponsiveness is rapidly reversible, requiring continuous BCR interaction with self-antigen and resultant regulatory signaling for its maintenance. Using adoptive transfer of anergic B cells with...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854724/ https://www.ncbi.nlm.nih.gov/pubmed/27114609 http://dx.doi.org/10.1084/jem.20150537 |
Sumario: | Many autoreactive B cells persist in the periphery in a state of unresponsiveness called anergy. This unresponsiveness is rapidly reversible, requiring continuous BCR interaction with self-antigen and resultant regulatory signaling for its maintenance. Using adoptive transfer of anergic B cells with subsequent acute induction of gene deletion or expression, we demonstrate that the continuous activities of independent inhibitory signaling pathways involving the tyrosine phosphatase SHP-1 and the inositol phosphatase SHIP-1 are required to maintain anergy. Acute breach of anergy by compromise of either of these pathways leads to rapid cell activation, proliferation, and generation of short-lived plasma cells that reside in extrafollicular foci. Results are consistent with predicted/observed reduction in the Lyn–SHIP-1–PTEN–SHP-1 axis function in B cells from systemic lupus erythematosus patients. |
---|