Cargando…
Biodegradable interstitial release polymer loading a novel small molecule targeting Axl receptor tyrosine kinase and reducing brain tumour migration and invasion
Glioblastoma multiforme (GBM) is the most common and aggressive brain tumour. The neoplasms are difficult to resect entirely because of their highly infiltration property and leading to the tumour edge is unclear. Gliadel wafer has been used as an intracerebral drug delivery system to eliminate the...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855077/ https://www.ncbi.nlm.nih.gov/pubmed/26257061 http://dx.doi.org/10.1038/onc.2015.277 |
_version_ | 1782430303357239296 |
---|---|
author | Yen, S-Y Chen, S-R Hsieh, J Li, Y-S Chuang, S-E Chuang, H-M Huang, M-H Lin, S-Z Harn, H-J Chiou, T-W |
author_facet | Yen, S-Y Chen, S-R Hsieh, J Li, Y-S Chuang, S-E Chuang, H-M Huang, M-H Lin, S-Z Harn, H-J Chiou, T-W |
author_sort | Yen, S-Y |
collection | PubMed |
description | Glioblastoma multiforme (GBM) is the most common and aggressive brain tumour. The neoplasms are difficult to resect entirely because of their highly infiltration property and leading to the tumour edge is unclear. Gliadel wafer has been used as an intracerebral drug delivery system to eliminate the residual tumour. However, because of its local low concentration and short diffusion distance, patient survival improves non-significantly. Axl is an essential regulator in cancer metastasis and patient survival. In this study, we developed a controlled-release polyanhydride polymer loading a novel small molecule, n-butylidenephthalide (BP), which is not only increasing local drug concentration and extending its diffusion distance but also reducing tumour invasion, mediated by reducing Axl expression. First, we determined that BP inhibited the expression of Axl in a dose- and time-dependent manner and reduced the migratory and invasive capabilities of GBM cells. In addition, BP downregulated matrix metalloproteinase activity, which is involved in cancer cell invasion. Furthermore, we demonstrated that BP regulated Axl via the extracellular signal-regulated kinases pathway. Epithelial-to-mesenchymal transition (EMT) is related to epithelial cells in the invasive migratory mesenchymal cells that underlie cancer progression; we demonstrated that BP reduced the expression of EMT-related genes. Furthermore, we used the overexpression of Axl in GBM cells to prove that Axl is a crucial target in the inhibition of GBM EMT, migration and invasion. In an in vivo study, we demonstrated that BP inhibited tumour growth and suppressed Axl expression in a dose-dependent manner according to a subcutaneous tumour model. Most importantly, in an intracranial tumour model with BP wafer in situ treatment, we demonstrated that the BP wafer not only significantly increased the survival rate but also decreased Axl expression, and inhibited tumour invasion. These results contribute to the development of a BP wafer for a novel therapeutic strategy for treating GBM invasion and increasing survival in clinical subjects. |
format | Online Article Text |
id | pubmed-4855077 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-48550772016-05-20 Biodegradable interstitial release polymer loading a novel small molecule targeting Axl receptor tyrosine kinase and reducing brain tumour migration and invasion Yen, S-Y Chen, S-R Hsieh, J Li, Y-S Chuang, S-E Chuang, H-M Huang, M-H Lin, S-Z Harn, H-J Chiou, T-W Oncogene Original Article Glioblastoma multiforme (GBM) is the most common and aggressive brain tumour. The neoplasms are difficult to resect entirely because of their highly infiltration property and leading to the tumour edge is unclear. Gliadel wafer has been used as an intracerebral drug delivery system to eliminate the residual tumour. However, because of its local low concentration and short diffusion distance, patient survival improves non-significantly. Axl is an essential regulator in cancer metastasis and patient survival. In this study, we developed a controlled-release polyanhydride polymer loading a novel small molecule, n-butylidenephthalide (BP), which is not only increasing local drug concentration and extending its diffusion distance but also reducing tumour invasion, mediated by reducing Axl expression. First, we determined that BP inhibited the expression of Axl in a dose- and time-dependent manner and reduced the migratory and invasive capabilities of GBM cells. In addition, BP downregulated matrix metalloproteinase activity, which is involved in cancer cell invasion. Furthermore, we demonstrated that BP regulated Axl via the extracellular signal-regulated kinases pathway. Epithelial-to-mesenchymal transition (EMT) is related to epithelial cells in the invasive migratory mesenchymal cells that underlie cancer progression; we demonstrated that BP reduced the expression of EMT-related genes. Furthermore, we used the overexpression of Axl in GBM cells to prove that Axl is a crucial target in the inhibition of GBM EMT, migration and invasion. In an in vivo study, we demonstrated that BP inhibited tumour growth and suppressed Axl expression in a dose-dependent manner according to a subcutaneous tumour model. Most importantly, in an intracranial tumour model with BP wafer in situ treatment, we demonstrated that the BP wafer not only significantly increased the survival rate but also decreased Axl expression, and inhibited tumour invasion. These results contribute to the development of a BP wafer for a novel therapeutic strategy for treating GBM invasion and increasing survival in clinical subjects. Nature Publishing Group 2016-04-28 2015-08-10 /pmc/articles/PMC4855077/ /pubmed/26257061 http://dx.doi.org/10.1038/onc.2015.277 Text en Copyright © 2016 Macmillan Publishers Limited http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ |
spellingShingle | Original Article Yen, S-Y Chen, S-R Hsieh, J Li, Y-S Chuang, S-E Chuang, H-M Huang, M-H Lin, S-Z Harn, H-J Chiou, T-W Biodegradable interstitial release polymer loading a novel small molecule targeting Axl receptor tyrosine kinase and reducing brain tumour migration and invasion |
title | Biodegradable interstitial release polymer loading a novel small molecule targeting Axl receptor tyrosine kinase and reducing brain tumour migration and invasion |
title_full | Biodegradable interstitial release polymer loading a novel small molecule targeting Axl receptor tyrosine kinase and reducing brain tumour migration and invasion |
title_fullStr | Biodegradable interstitial release polymer loading a novel small molecule targeting Axl receptor tyrosine kinase and reducing brain tumour migration and invasion |
title_full_unstemmed | Biodegradable interstitial release polymer loading a novel small molecule targeting Axl receptor tyrosine kinase and reducing brain tumour migration and invasion |
title_short | Biodegradable interstitial release polymer loading a novel small molecule targeting Axl receptor tyrosine kinase and reducing brain tumour migration and invasion |
title_sort | biodegradable interstitial release polymer loading a novel small molecule targeting axl receptor tyrosine kinase and reducing brain tumour migration and invasion |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855077/ https://www.ncbi.nlm.nih.gov/pubmed/26257061 http://dx.doi.org/10.1038/onc.2015.277 |
work_keys_str_mv | AT yensy biodegradableinterstitialreleasepolymerloadinganovelsmallmoleculetargetingaxlreceptortyrosinekinaseandreducingbraintumourmigrationandinvasion AT chensr biodegradableinterstitialreleasepolymerloadinganovelsmallmoleculetargetingaxlreceptortyrosinekinaseandreducingbraintumourmigrationandinvasion AT hsiehj biodegradableinterstitialreleasepolymerloadinganovelsmallmoleculetargetingaxlreceptortyrosinekinaseandreducingbraintumourmigrationandinvasion AT liys biodegradableinterstitialreleasepolymerloadinganovelsmallmoleculetargetingaxlreceptortyrosinekinaseandreducingbraintumourmigrationandinvasion AT chuangse biodegradableinterstitialreleasepolymerloadinganovelsmallmoleculetargetingaxlreceptortyrosinekinaseandreducingbraintumourmigrationandinvasion AT chuanghm biodegradableinterstitialreleasepolymerloadinganovelsmallmoleculetargetingaxlreceptortyrosinekinaseandreducingbraintumourmigrationandinvasion AT huangmh biodegradableinterstitialreleasepolymerloadinganovelsmallmoleculetargetingaxlreceptortyrosinekinaseandreducingbraintumourmigrationandinvasion AT linsz biodegradableinterstitialreleasepolymerloadinganovelsmallmoleculetargetingaxlreceptortyrosinekinaseandreducingbraintumourmigrationandinvasion AT harnhj biodegradableinterstitialreleasepolymerloadinganovelsmallmoleculetargetingaxlreceptortyrosinekinaseandreducingbraintumourmigrationandinvasion AT chioutw biodegradableinterstitialreleasepolymerloadinganovelsmallmoleculetargetingaxlreceptortyrosinekinaseandreducingbraintumourmigrationandinvasion |