Cargando…

Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers

Whole genome analysis approaches are revealing recurrent cancer-associated somatic alterations in non-coding DNA regions. We combined somatic copy number analysis of 12 tumor types with tissue-specific epigenetic profiling to identify significant regions of focal amplification harboring super-enhanc...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xiaoyang, Choi, Peter S., Francis, Joshua M., Imielinski, Marcin, Watanabe, Hideo, Cherniack, Andrew D., Meyerson, Matthew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4857881/
https://www.ncbi.nlm.nih.gov/pubmed/26656844
http://dx.doi.org/10.1038/ng.3470
Descripción
Sumario:Whole genome analysis approaches are revealing recurrent cancer-associated somatic alterations in non-coding DNA regions. We combined somatic copy number analysis of 12 tumor types with tissue-specific epigenetic profiling to identify significant regions of focal amplification harboring super-enhancers. Copy-number gains of non-coding regions harboring super-enhancers near KLF5, USP12, PARD6B and MYC are associated with over-expression of these cancer-related genes. We show that two distinct focal amplifications of super-enhancers 3′ to MYC in lung adenocarcinoma (MYC-LASE) and endometrial carcinoma (MYC-ECSE), are physically associated with the MYC promoter and correlate with MYC over-expression. CRISPR/Cas9-mediated repression or deletion of a constituent enhancer within the MYC-LASE region led to significant reductions in the expression of MYC and its target genes, and to the impairment of anchorage-independent and clonogenic growth, consistent with an oncogenic function. Our results demonstrate that genomic amplification of super-enhancers represents a common mechanism to activate cancer driver genes in multiple cancer types.