Cargando…

The Protective Effect of Beraprost Sodium on Diabetic Nephropathy by Inhibiting Inflammation and p38 MAPK Signaling Pathway in High-Fat Diet/Streptozotocin-Induced Diabetic Rats

Background. p38 mitogen-activated protein kinase (MAPK) plays a crucial role in regulating signaling pathways implicated in inflammatory processes leading to diabetic nephropathy (DN). This study aimed to examine p38 MAPK activation in DN and determine whether beraprost sodium (BPS) ameliorates DN b...

Descripción completa

Detalles Bibliográficos
Autores principales: Peng, Li, Li, Jie, Xu, Yixing, Wang, Yangtian, Du, Hong, Shao, Jiaqing, Liu, Zhimin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860249/
https://www.ncbi.nlm.nih.gov/pubmed/27212945
http://dx.doi.org/10.1155/2016/1690474
Descripción
Sumario:Background. p38 mitogen-activated protein kinase (MAPK) plays a crucial role in regulating signaling pathways implicated in inflammatory processes leading to diabetic nephropathy (DN). This study aimed to examine p38 MAPK activation in DN and determine whether beraprost sodium (BPS) ameliorates DN by inhibiting inflammation and p38 MAPK signaling pathway in diabetic rats. Methods. Forty male Sprague Dawley (SD) rats were randomly divided into the normal control group, type 2 diabetic group, and BPS treatment group. At the end of the 8-week experiment, we measured renal pathological changes and the activation of the p38 MAPK signaling pathway and inflammation. Result. After BPS treatment, renal function, 24-hour urine protein, lipid profiles, and blood glucose level were improved significantly; meanwhile, inflammation and the expression of p38 MAPK signaling pathway in the diabetic kidney were attenuated. Conclusions. BPS significantly prevented type 2 diabetes induced kidney injury characterized by renal dysfunction and pathological changes. The protective mechanisms are complicated but may be mainly attributed to the inhibition of the p38 MAPK signaling pathway and inflammation in the diabetic kidney.