Cargando…
A Retroviral CRISPR-Cas9 System for Cellular Autism-Associated Phenotype Discovery in Developing Neurons
Retroviruses expressing a fluorescent protein, Cas9, and a small guide RNA are used to mimic nonsense PTEN mutations from autism patients in developing mouse neurons. We compare the cellular phenotype elicited by CRISPR-Cas9 to those elicited using shRNA or Cre/Lox technologies and find that knockdo...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4861960/ https://www.ncbi.nlm.nih.gov/pubmed/27161796 http://dx.doi.org/10.1038/srep25611 |
_version_ | 1782431284919795712 |
---|---|
author | Williams, Michael R. Fricano-Kugler, Catherine J. Getz, Stephanie A. Skelton, Patrick D. Lee, Jeonghoon Rizzuto, Christian P. Geller, Joseph S. Li, Meijie Luikart, Bryan W. |
author_facet | Williams, Michael R. Fricano-Kugler, Catherine J. Getz, Stephanie A. Skelton, Patrick D. Lee, Jeonghoon Rizzuto, Christian P. Geller, Joseph S. Li, Meijie Luikart, Bryan W. |
author_sort | Williams, Michael R. |
collection | PubMed |
description | Retroviruses expressing a fluorescent protein, Cas9, and a small guide RNA are used to mimic nonsense PTEN mutations from autism patients in developing mouse neurons. We compare the cellular phenotype elicited by CRISPR-Cas9 to those elicited using shRNA or Cre/Lox technologies and find that knockdown or knockout (KO) produced a corresponding moderate or severe neuronal hypertrophy in all cells. In contrast, the Cas9 approach produced missense and nonsense Pten mutations, resulting in a mix of KO-equivalent hypertrophic and wild type-like phenotypes. Importantly, despite this mixed phenotype, the neuronal hypertrophy resulting from Pten loss was evident on average in the population of manipulated cells. Having reproduced the known Pten KO phenotype using the CRISPR-Cas9 system we design viruses to target a gene that has recently been associated with autism, KATNAL2. Katnal2 deletion in the mouse results in decreased dendritic arborization of developing neurons. We conclude that retroviral implementation of the CRISPR-Cas9 system is an efficient system for cellular phenotype discovery in wild-type animals. |
format | Online Article Text |
id | pubmed-4861960 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-48619602016-05-23 A Retroviral CRISPR-Cas9 System for Cellular Autism-Associated Phenotype Discovery in Developing Neurons Williams, Michael R. Fricano-Kugler, Catherine J. Getz, Stephanie A. Skelton, Patrick D. Lee, Jeonghoon Rizzuto, Christian P. Geller, Joseph S. Li, Meijie Luikart, Bryan W. Sci Rep Article Retroviruses expressing a fluorescent protein, Cas9, and a small guide RNA are used to mimic nonsense PTEN mutations from autism patients in developing mouse neurons. We compare the cellular phenotype elicited by CRISPR-Cas9 to those elicited using shRNA or Cre/Lox technologies and find that knockdown or knockout (KO) produced a corresponding moderate or severe neuronal hypertrophy in all cells. In contrast, the Cas9 approach produced missense and nonsense Pten mutations, resulting in a mix of KO-equivalent hypertrophic and wild type-like phenotypes. Importantly, despite this mixed phenotype, the neuronal hypertrophy resulting from Pten loss was evident on average in the population of manipulated cells. Having reproduced the known Pten KO phenotype using the CRISPR-Cas9 system we design viruses to target a gene that has recently been associated with autism, KATNAL2. Katnal2 deletion in the mouse results in decreased dendritic arborization of developing neurons. We conclude that retroviral implementation of the CRISPR-Cas9 system is an efficient system for cellular phenotype discovery in wild-type animals. Nature Publishing Group 2016-05-10 /pmc/articles/PMC4861960/ /pubmed/27161796 http://dx.doi.org/10.1038/srep25611 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Williams, Michael R. Fricano-Kugler, Catherine J. Getz, Stephanie A. Skelton, Patrick D. Lee, Jeonghoon Rizzuto, Christian P. Geller, Joseph S. Li, Meijie Luikart, Bryan W. A Retroviral CRISPR-Cas9 System for Cellular Autism-Associated Phenotype Discovery in Developing Neurons |
title | A Retroviral CRISPR-Cas9 System for Cellular Autism-Associated Phenotype Discovery in Developing Neurons |
title_full | A Retroviral CRISPR-Cas9 System for Cellular Autism-Associated Phenotype Discovery in Developing Neurons |
title_fullStr | A Retroviral CRISPR-Cas9 System for Cellular Autism-Associated Phenotype Discovery in Developing Neurons |
title_full_unstemmed | A Retroviral CRISPR-Cas9 System for Cellular Autism-Associated Phenotype Discovery in Developing Neurons |
title_short | A Retroviral CRISPR-Cas9 System for Cellular Autism-Associated Phenotype Discovery in Developing Neurons |
title_sort | retroviral crispr-cas9 system for cellular autism-associated phenotype discovery in developing neurons |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4861960/ https://www.ncbi.nlm.nih.gov/pubmed/27161796 http://dx.doi.org/10.1038/srep25611 |
work_keys_str_mv | AT williamsmichaelr aretroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons AT fricanokuglercatherinej aretroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons AT getzstephaniea aretroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons AT skeltonpatrickd aretroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons AT leejeonghoon aretroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons AT rizzutochristianp aretroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons AT gellerjosephs aretroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons AT limeijie aretroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons AT luikartbryanw aretroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons AT williamsmichaelr retroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons AT fricanokuglercatherinej retroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons AT getzstephaniea retroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons AT skeltonpatrickd retroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons AT leejeonghoon retroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons AT rizzutochristianp retroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons AT gellerjosephs retroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons AT limeijie retroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons AT luikartbryanw retroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons |