Cargando…

A Retroviral CRISPR-Cas9 System for Cellular Autism-Associated Phenotype Discovery in Developing Neurons

Retroviruses expressing a fluorescent protein, Cas9, and a small guide RNA are used to mimic nonsense PTEN mutations from autism patients in developing mouse neurons. We compare the cellular phenotype elicited by CRISPR-Cas9 to those elicited using shRNA or Cre/Lox technologies and find that knockdo...

Descripción completa

Detalles Bibliográficos
Autores principales: Williams, Michael R., Fricano-Kugler, Catherine J., Getz, Stephanie A., Skelton, Patrick D., Lee, Jeonghoon, Rizzuto, Christian P., Geller, Joseph S., Li, Meijie, Luikart, Bryan W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4861960/
https://www.ncbi.nlm.nih.gov/pubmed/27161796
http://dx.doi.org/10.1038/srep25611
_version_ 1782431284919795712
author Williams, Michael R.
Fricano-Kugler, Catherine J.
Getz, Stephanie A.
Skelton, Patrick D.
Lee, Jeonghoon
Rizzuto, Christian P.
Geller, Joseph S.
Li, Meijie
Luikart, Bryan W.
author_facet Williams, Michael R.
Fricano-Kugler, Catherine J.
Getz, Stephanie A.
Skelton, Patrick D.
Lee, Jeonghoon
Rizzuto, Christian P.
Geller, Joseph S.
Li, Meijie
Luikart, Bryan W.
author_sort Williams, Michael R.
collection PubMed
description Retroviruses expressing a fluorescent protein, Cas9, and a small guide RNA are used to mimic nonsense PTEN mutations from autism patients in developing mouse neurons. We compare the cellular phenotype elicited by CRISPR-Cas9 to those elicited using shRNA or Cre/Lox technologies and find that knockdown or knockout (KO) produced a corresponding moderate or severe neuronal hypertrophy in all cells. In contrast, the Cas9 approach produced missense and nonsense Pten mutations, resulting in a mix of KO-equivalent hypertrophic and wild type-like phenotypes. Importantly, despite this mixed phenotype, the neuronal hypertrophy resulting from Pten loss was evident on average in the population of manipulated cells. Having reproduced the known Pten KO phenotype using the CRISPR-Cas9 system we design viruses to target a gene that has recently been associated with autism, KATNAL2. Katnal2 deletion in the mouse results in decreased dendritic arborization of developing neurons. We conclude that retroviral implementation of the CRISPR-Cas9 system is an efficient system for cellular phenotype discovery in wild-type animals.
format Online
Article
Text
id pubmed-4861960
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-48619602016-05-23 A Retroviral CRISPR-Cas9 System for Cellular Autism-Associated Phenotype Discovery in Developing Neurons Williams, Michael R. Fricano-Kugler, Catherine J. Getz, Stephanie A. Skelton, Patrick D. Lee, Jeonghoon Rizzuto, Christian P. Geller, Joseph S. Li, Meijie Luikart, Bryan W. Sci Rep Article Retroviruses expressing a fluorescent protein, Cas9, and a small guide RNA are used to mimic nonsense PTEN mutations from autism patients in developing mouse neurons. We compare the cellular phenotype elicited by CRISPR-Cas9 to those elicited using shRNA or Cre/Lox technologies and find that knockdown or knockout (KO) produced a corresponding moderate or severe neuronal hypertrophy in all cells. In contrast, the Cas9 approach produced missense and nonsense Pten mutations, resulting in a mix of KO-equivalent hypertrophic and wild type-like phenotypes. Importantly, despite this mixed phenotype, the neuronal hypertrophy resulting from Pten loss was evident on average in the population of manipulated cells. Having reproduced the known Pten KO phenotype using the CRISPR-Cas9 system we design viruses to target a gene that has recently been associated with autism, KATNAL2. Katnal2 deletion in the mouse results in decreased dendritic arborization of developing neurons. We conclude that retroviral implementation of the CRISPR-Cas9 system is an efficient system for cellular phenotype discovery in wild-type animals. Nature Publishing Group 2016-05-10 /pmc/articles/PMC4861960/ /pubmed/27161796 http://dx.doi.org/10.1038/srep25611 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Williams, Michael R.
Fricano-Kugler, Catherine J.
Getz, Stephanie A.
Skelton, Patrick D.
Lee, Jeonghoon
Rizzuto, Christian P.
Geller, Joseph S.
Li, Meijie
Luikart, Bryan W.
A Retroviral CRISPR-Cas9 System for Cellular Autism-Associated Phenotype Discovery in Developing Neurons
title A Retroviral CRISPR-Cas9 System for Cellular Autism-Associated Phenotype Discovery in Developing Neurons
title_full A Retroviral CRISPR-Cas9 System for Cellular Autism-Associated Phenotype Discovery in Developing Neurons
title_fullStr A Retroviral CRISPR-Cas9 System for Cellular Autism-Associated Phenotype Discovery in Developing Neurons
title_full_unstemmed A Retroviral CRISPR-Cas9 System for Cellular Autism-Associated Phenotype Discovery in Developing Neurons
title_short A Retroviral CRISPR-Cas9 System for Cellular Autism-Associated Phenotype Discovery in Developing Neurons
title_sort retroviral crispr-cas9 system for cellular autism-associated phenotype discovery in developing neurons
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4861960/
https://www.ncbi.nlm.nih.gov/pubmed/27161796
http://dx.doi.org/10.1038/srep25611
work_keys_str_mv AT williamsmichaelr aretroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons
AT fricanokuglercatherinej aretroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons
AT getzstephaniea aretroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons
AT skeltonpatrickd aretroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons
AT leejeonghoon aretroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons
AT rizzutochristianp aretroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons
AT gellerjosephs aretroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons
AT limeijie aretroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons
AT luikartbryanw aretroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons
AT williamsmichaelr retroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons
AT fricanokuglercatherinej retroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons
AT getzstephaniea retroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons
AT skeltonpatrickd retroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons
AT leejeonghoon retroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons
AT rizzutochristianp retroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons
AT gellerjosephs retroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons
AT limeijie retroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons
AT luikartbryanw retroviralcrisprcas9systemforcellularautismassociatedphenotypediscoveryindevelopingneurons