Cargando…
Degenerin channel activation causes caspase‐mediated protein degradation and mitochondrial dysfunction in adult C. elegans muscle
BACKGROUND: Declines in skeletal muscle structure and function are found in various clinical populations, but the intramuscular proteolytic pathways that govern declines in these individuals remain relatively poorly understood. The nematode Caenorhabditis elegans has been developed into a model for...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864282/ https://www.ncbi.nlm.nih.gov/pubmed/27493871 http://dx.doi.org/10.1002/jcsm.12040 |
_version_ | 1782431599293366272 |
---|---|
author | Gaffney, Christopher J. Shephard, Freya Chu, Jeff Baillie, David L. Rose, Ann Constantin‐Teodosiu, Dumitru Greenhaff, Paul L. Szewczyk, Nathaniel J. |
author_facet | Gaffney, Christopher J. Shephard, Freya Chu, Jeff Baillie, David L. Rose, Ann Constantin‐Teodosiu, Dumitru Greenhaff, Paul L. Szewczyk, Nathaniel J. |
author_sort | Gaffney, Christopher J. |
collection | PubMed |
description | BACKGROUND: Declines in skeletal muscle structure and function are found in various clinical populations, but the intramuscular proteolytic pathways that govern declines in these individuals remain relatively poorly understood. The nematode Caenorhabditis elegans has been developed into a model for identifying and understanding these pathways. Recently, it was reported that UNC‐105/degenerin channel activation produced muscle protein degradation via an unknown mechanism. METHODS: Generation of transgenic and double mutant C. elegans, RNAi, and drug treatments were utilized to assess molecular events governing protein degradation. Western blots were used to measure protein content. Cationic dyes and adenosine triphosphate (ATP) production assays were utilized to measure mitochondrial function. RESULTS: unc‐105 gain‐of‐function mutants display aberrant muscle protein degradation and a movement defect; both are reduced in intragenic revertants and in let‐2 mutants that gate the hyperactive UNC‐105 channel. Degradation is not suppressed by interventions suppressing proteasome‐mediated, autophagy‐mediated, or calpain‐mediated degradation nor by suppressors of degenerin‐induced neurodegeneration. Protein degradation, but not the movement defect, is decreased by treatment with caspase inhibitors or RNAi against ced‐3 or ced‐4. Adult unc‐105 muscles display a time‐dependent fragmentation of the mitochondrial reticulum that is associated with impaired mitochondrial membrane potential and that correlates with decreased rates of maximal ATP production. Reduced levels of CED‐4, which is sufficient to activate CED‐3 in vitro, are observed in unc‐105 mitochondrial isolations. CONCLUSIONS: Constitutive cationic influx into muscle appears to cause caspase degradation of cytosolic proteins as the result of mitochondrial dysfunction, which may be relevant to ageing and sarcopenia. |
format | Online Article Text |
id | pubmed-4864282 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-48642822016-05-27 Degenerin channel activation causes caspase‐mediated protein degradation and mitochondrial dysfunction in adult C. elegans muscle Gaffney, Christopher J. Shephard, Freya Chu, Jeff Baillie, David L. Rose, Ann Constantin‐Teodosiu, Dumitru Greenhaff, Paul L. Szewczyk, Nathaniel J. J Cachexia Sarcopenia Muscle Original Articles BACKGROUND: Declines in skeletal muscle structure and function are found in various clinical populations, but the intramuscular proteolytic pathways that govern declines in these individuals remain relatively poorly understood. The nematode Caenorhabditis elegans has been developed into a model for identifying and understanding these pathways. Recently, it was reported that UNC‐105/degenerin channel activation produced muscle protein degradation via an unknown mechanism. METHODS: Generation of transgenic and double mutant C. elegans, RNAi, and drug treatments were utilized to assess molecular events governing protein degradation. Western blots were used to measure protein content. Cationic dyes and adenosine triphosphate (ATP) production assays were utilized to measure mitochondrial function. RESULTS: unc‐105 gain‐of‐function mutants display aberrant muscle protein degradation and a movement defect; both are reduced in intragenic revertants and in let‐2 mutants that gate the hyperactive UNC‐105 channel. Degradation is not suppressed by interventions suppressing proteasome‐mediated, autophagy‐mediated, or calpain‐mediated degradation nor by suppressors of degenerin‐induced neurodegeneration. Protein degradation, but not the movement defect, is decreased by treatment with caspase inhibitors or RNAi against ced‐3 or ced‐4. Adult unc‐105 muscles display a time‐dependent fragmentation of the mitochondrial reticulum that is associated with impaired mitochondrial membrane potential and that correlates with decreased rates of maximal ATP production. Reduced levels of CED‐4, which is sufficient to activate CED‐3 in vitro, are observed in unc‐105 mitochondrial isolations. CONCLUSIONS: Constitutive cationic influx into muscle appears to cause caspase degradation of cytosolic proteins as the result of mitochondrial dysfunction, which may be relevant to ageing and sarcopenia. John Wiley and Sons Inc. 2015-06-04 2016-05 /pmc/articles/PMC4864282/ /pubmed/27493871 http://dx.doi.org/10.1002/jcsm.12040 Text en © 2015 The Authors Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society of Sarcopenia, Cachexia and Wasting Disorders This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Gaffney, Christopher J. Shephard, Freya Chu, Jeff Baillie, David L. Rose, Ann Constantin‐Teodosiu, Dumitru Greenhaff, Paul L. Szewczyk, Nathaniel J. Degenerin channel activation causes caspase‐mediated protein degradation and mitochondrial dysfunction in adult C. elegans muscle |
title | Degenerin channel activation causes caspase‐mediated protein degradation and mitochondrial dysfunction in adult C. elegans muscle |
title_full | Degenerin channel activation causes caspase‐mediated protein degradation and mitochondrial dysfunction in adult C. elegans muscle |
title_fullStr | Degenerin channel activation causes caspase‐mediated protein degradation and mitochondrial dysfunction in adult C. elegans muscle |
title_full_unstemmed | Degenerin channel activation causes caspase‐mediated protein degradation and mitochondrial dysfunction in adult C. elegans muscle |
title_short | Degenerin channel activation causes caspase‐mediated protein degradation and mitochondrial dysfunction in adult C. elegans muscle |
title_sort | degenerin channel activation causes caspase‐mediated protein degradation and mitochondrial dysfunction in adult c. elegans muscle |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864282/ https://www.ncbi.nlm.nih.gov/pubmed/27493871 http://dx.doi.org/10.1002/jcsm.12040 |
work_keys_str_mv | AT gaffneychristopherj degenerinchannelactivationcausescaspasemediatedproteindegradationandmitochondrialdysfunctioninadultcelegansmuscle AT shephardfreya degenerinchannelactivationcausescaspasemediatedproteindegradationandmitochondrialdysfunctioninadultcelegansmuscle AT chujeff degenerinchannelactivationcausescaspasemediatedproteindegradationandmitochondrialdysfunctioninadultcelegansmuscle AT bailliedavidl degenerinchannelactivationcausescaspasemediatedproteindegradationandmitochondrialdysfunctioninadultcelegansmuscle AT roseann degenerinchannelactivationcausescaspasemediatedproteindegradationandmitochondrialdysfunctioninadultcelegansmuscle AT constantinteodosiudumitru degenerinchannelactivationcausescaspasemediatedproteindegradationandmitochondrialdysfunctioninadultcelegansmuscle AT greenhaffpaull degenerinchannelactivationcausescaspasemediatedproteindegradationandmitochondrialdysfunctioninadultcelegansmuscle AT szewczyknathanielj degenerinchannelactivationcausescaspasemediatedproteindegradationandmitochondrialdysfunctioninadultcelegansmuscle |