Cargando…
Power Calculation of Multi-step Combined Principal Components with Applications to Genetic Association Studies
Principal component analysis (PCA) is a useful tool to identify important linear combination of correlated variables in multivariate analysis and has been applied to detect association between genetic variants and human complex diseases of interest. How to choose adequate number of principal compone...
Autores principales: | Li, Zhengbang, Zhang, Wei, Pan, Dongdong, Li, Qizhai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4870571/ https://www.ncbi.nlm.nih.gov/pubmed/27189724 http://dx.doi.org/10.1038/srep26243 |
Ejemplares similares
-
Testing Association between Mixed Type Outcomes and Covariates Jointly by the Use of a Latent Variable
por: Zhu, Jiayan, et al.
Publicado: (2017) -
A Powerful Method To Test Associations Between Ordinal Traits and Genotypes
por: Wang, Jinjuan, et al.
Publicado: (2019) -
Robust joint analysis allowing for model uncertainty in two-stage genetic association studies
por: Pan, Dongdong, et al.
Publicado: (2011) -
Application of Principal Component Analysis (PCA) to the Evaluation and Screening of Multiactivity Fungi
por: Yang, Zonglin, et al.
Publicado: (2022) -
Genetic mapping of principal components of canine pelvic morphology
por: Fealey, Mark J., et al.
Publicado: (2017)