Cargando…

Novel, primate-specific PDE10A isoform highlights gene expression complexity in human striatum with implications on the molecular pathology of bipolar disorder

Bipolar disorder is a highly heritable neuropsychiatric disorder affecting nearly 2.5% of the population. Prior genetic studies identified a panel of common and rare single-nucleotide polymorphisms associated with the disease that map to the first intron of the PDE10A gene. RNA sequencing of striata...

Descripción completa

Detalles Bibliográficos
Autores principales: MacMullen, C M, Vick, K, Pacifico, R, Fallahi-Sichani, M, Davis, R L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872433/
https://www.ncbi.nlm.nih.gov/pubmed/26905414
http://dx.doi.org/10.1038/tp.2016.3
Descripción
Sumario:Bipolar disorder is a highly heritable neuropsychiatric disorder affecting nearly 2.5% of the population. Prior genetic studies identified a panel of common and rare single-nucleotide polymorphisms associated with the disease that map to the first intron of the PDE10A gene. RNA sequencing of striatal brain tissue from bipolar and healthy control subjects identified a novel transcript of PDE10A, named PDE10A19, that codes for a PDE10A isoform with a unique N terminus. Genomic sequences that can encode the novel N terminus were conserved in other primates but not rodents. The RNA transcript was expressed at equal or greater levels in the human striatum compared with the two annotated transcripts, PDE10A1 and PDE10A2. The PDE10A19 transcript was detected in polysomal fractions; western blotting experiments confirmed that the RNA transcript is translated into protein. Immunocytochemistry studies using transfected mouse striatal and cortical neurons demonstrated that the PDE10A19 protein distributes to the cytosol, like PDE10A1, and unlike PDE10A2, which is associated with plasma membranes. Immunoprecipitation and immunocytochemical experiments revealed that the PDE10A19 isoform interacts physically with PDE10A2 and, when expressed at elevated levels, interferes with the plasma membrane localization of PDE10A2. These studies illustrate the complexity of PDE10A gene expression in the human brain and highlight the need to unravel the gene's complex and complete coding capabilities along with its transcriptional and translational regulation to guide the development of therapeutic agents that target the protein for the treatment of neuropsychiatric illness.