Cargando…
Zinc Finger Domain of the PRDM9 Gene on Chromosome 1 Exhibits High Diversity in Ruminants but Its Paralog PRDM7 Contains Multiple Disruptive Mutations
PRDM9 is the sole hybrid sterility gene identified so far in vertebrates. PRDM9 gene encodes a protein with an immensely variable zinc-finger (ZF) domain that determines the site of meiotic recombination hotspots genome-wide. In this study, the terminal ZF domain of PRDM9 on bovine chromosome 1 and...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4874674/ https://www.ncbi.nlm.nih.gov/pubmed/27203728 http://dx.doi.org/10.1371/journal.pone.0156159 |
Sumario: | PRDM9 is the sole hybrid sterility gene identified so far in vertebrates. PRDM9 gene encodes a protein with an immensely variable zinc-finger (ZF) domain that determines the site of meiotic recombination hotspots genome-wide. In this study, the terminal ZF domain of PRDM9 on bovine chromosome 1 and its paralog on chromosome 22 were characterized in 225 samples from five ruminant species (cattle, yak, mithun, sheep and goat). We found extraordinary variation in the number of PRDM9 zinc fingers (6 to 12). We sequenced PRDM9 ZF encoding region from 15 individuals (carrying the same ZF number in both copies) and found 43 different ZF domain sequences. Ruminant zinc fingers of PRDM9 were found to be diversifying under positive selection and concerted evolution, specifically at positions involved in defining their DNA-binding specificity, consistent with the reports from other vertebrates such as mice, humans, equids and chimpanzees. ZF-encoding regions of the PRDM7, a paralog of PRDM9 on bovine chromosome 22 and on unknown chromosomes in other studied species were found to contain 84 base repeat units as in PRDM9, but there were multiple disruptive mutations after the first repeat unit. The diversity of the ZFs suggests that PRDM9 may activate recombination hotspots that are largely unique to each ruminant species. |
---|