Cargando…

Novel application of hydrophobin in medical science: a drug carrier for improving serum stability

Multiple physiological properties of glucagon-like peptide-1 (GLP-1) ensure that it is a promising drug candidate for the treatment of type 2 diabetes. However, the in vivo half-life of GLP-1 is short because of rapid degradation by dipeptidyl peptidase-IV (DPP-IV) and renal clearance. The poor seru...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Liqiang, Xu, Haijin, Li, Ying, Song, Dongmin, Wang, Xiangxiang, Qiao, Mingqiang, Gong, Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876437/
https://www.ncbi.nlm.nih.gov/pubmed/27212208
http://dx.doi.org/10.1038/srep26461
Descripción
Sumario:Multiple physiological properties of glucagon-like peptide-1 (GLP-1) ensure that it is a promising drug candidate for the treatment of type 2 diabetes. However, the in vivo half-life of GLP-1 is short because of rapid degradation by dipeptidyl peptidase-IV (DPP-IV) and renal clearance. The poor serum stability of GLP-1 has significantly limited its clinical utility, although many studies are focused on extending the serum stability of this molecule. Hydrophobin, a self-assembling protein, was first applied as drug carrier to stabilize GLP-1 against protease degradation by forming a cavity. The glucose tolerance test clarified that the complex retained blood glucose clearance activity for 72 hours suggesting that this complex might be utilized as a drug candidate administered every 2–3 days. Additionally, it was found that the mutagenesis of hydrophobin preferred a unique pH condition for self-assembly. These findings suggested that hydrophobin might be a powerful tool as a drug carrier or a pH sensitive drug-release compound. The novel pharmaceutical applications of hydrophobin might result in future widespread interest in hydrophobin.