Cargando…
miR-92a Corrects CD34(+) Cell Dysfunction in Diabetes by Modulating Core Circadian Genes Involved in Progenitor Differentiation
Autologous CD34(+) cells are widely used for vascular repair; however, in individuals with diabetes and microvascular disease these cells are dysfunctional. In this study, we examine expression of the clock genes Clock, Bmal, Per1, Per2, Cry1, and Cry2 in CD34(+) cells of diabetic and nondiabetic or...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876760/ https://www.ncbi.nlm.nih.gov/pubmed/26283734 http://dx.doi.org/10.2337/db15-0521 |
Sumario: | Autologous CD34(+) cells are widely used for vascular repair; however, in individuals with diabetes and microvascular disease these cells are dysfunctional. In this study, we examine expression of the clock genes Clock, Bmal, Per1, Per2, Cry1, and Cry2 in CD34(+) cells of diabetic and nondiabetic origin and determine the small encoding RNA (miRNA) profile of these cells. The degree of diabetic retinopathy (DR) was assessed. As CD34(+) cells acquired mature endothelial markers, they exhibit robust oscillations of clock genes. siRNA treatment of CD34(+) cells revealed Per2 as the only clock gene necessary to maintain the undifferentiated state of CD34(+) cells. Twenty-five miRNAs targeting clock genes were identified. Three of the miRNAs (miR-18b, miR-16, and miR-34c) were found only in diabetic progenitors. The expression of the Per2-regulatory miRNA, miR-92a, was markedly reduced in CD34(+) cells from individuals with DR compared with control subjects and patients with diabetes with no DR. Restoration of miR-92a levels in CD34(+) cells from patients with diabetes with DR reduced the inflammatory phenotype of these cells and the diabetes-induced propensity toward myeloid differentiation. Our studies suggest that restoring levels of miR-92a could enhance the usefulness of CD34(+) cells in autologous cell therapy. |
---|