Cargando…

Raptor/mTORC1 loss in adipocytes causes progressive lipodystrophy and fatty liver disease

OBJECTIVE: Normal adipose tissue growth and function is critical to maintaining metabolic homeostasis and its excess (e.g. obesity) or absence (e.g. lipodystrophy) is associated with severe metabolic disease. The goal of this study was to understand the mechanisms maintaining healthy adipose tissue...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Peter L., Tang, Yuefeng, Li, Huawei, Guertin, David A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877665/
https://www.ncbi.nlm.nih.gov/pubmed/27257602
http://dx.doi.org/10.1016/j.molmet.2016.04.001
_version_ 1782433422564655104
author Lee, Peter L.
Tang, Yuefeng
Li, Huawei
Guertin, David A.
author_facet Lee, Peter L.
Tang, Yuefeng
Li, Huawei
Guertin, David A.
author_sort Lee, Peter L.
collection PubMed
description OBJECTIVE: Normal adipose tissue growth and function is critical to maintaining metabolic homeostasis and its excess (e.g. obesity) or absence (e.g. lipodystrophy) is associated with severe metabolic disease. The goal of this study was to understand the mechanisms maintaining healthy adipose tissue growth and function. METHODS: Adipose tissue senses and responds to systemic changes in growth factor and nutrient availability; in cells mTORC1 regulates metabolism in response to growth factors and nutrients. Thus, mTORC1 is poised to be a critical intracellular regulator of adipocyte metabolism. Here, we investigate the role of mTORC1 in mature adipocytes by generating and characterizing mice in which the Adiponectin-Cre driver is used to delete floxed alleles of Raptor, which encodes an essential regulatory subunit of mTORC1. RESULTS: Raptor(Adipoq-cre) mice have normal white adipose tissue (WAT) mass for the first few weeks of life, but soon thereafter develop lipodystrophy associated with hepatomegaly, hepatic steatosis, and insulin intolerance. Raptor(Adipoq-cre) mice are also resistant to becoming obese when consuming a high fat diet (HFD). Resistance to obesity does not appear to be due to increased energy expenditure, but rather from failed adipose tissue expansion resulting in severe hepatomegaly associated with hyperphagia and defective dietary lipid absorption. Deleting Raptor in WAT also decreases C/EBPα expression and the expression of its downstream target adiponectin, providing one possible mechanism of mTORC1 function in WAT. CONCLUSIONS: mTORC1 activity in mature adipocytes is essential for maintaining normal adipose tissue growth and its selective loss in mature adipocytes leads to a progressive lipodystrophy disorder and systemic metabolic disease that shares many of the hallmarks of human congenital generalized lipodystrophy.
format Online
Article
Text
id pubmed-4877665
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-48776652016-06-02 Raptor/mTORC1 loss in adipocytes causes progressive lipodystrophy and fatty liver disease Lee, Peter L. Tang, Yuefeng Li, Huawei Guertin, David A. Mol Metab Brief Communication OBJECTIVE: Normal adipose tissue growth and function is critical to maintaining metabolic homeostasis and its excess (e.g. obesity) or absence (e.g. lipodystrophy) is associated with severe metabolic disease. The goal of this study was to understand the mechanisms maintaining healthy adipose tissue growth and function. METHODS: Adipose tissue senses and responds to systemic changes in growth factor and nutrient availability; in cells mTORC1 regulates metabolism in response to growth factors and nutrients. Thus, mTORC1 is poised to be a critical intracellular regulator of adipocyte metabolism. Here, we investigate the role of mTORC1 in mature adipocytes by generating and characterizing mice in which the Adiponectin-Cre driver is used to delete floxed alleles of Raptor, which encodes an essential regulatory subunit of mTORC1. RESULTS: Raptor(Adipoq-cre) mice have normal white adipose tissue (WAT) mass for the first few weeks of life, but soon thereafter develop lipodystrophy associated with hepatomegaly, hepatic steatosis, and insulin intolerance. Raptor(Adipoq-cre) mice are also resistant to becoming obese when consuming a high fat diet (HFD). Resistance to obesity does not appear to be due to increased energy expenditure, but rather from failed adipose tissue expansion resulting in severe hepatomegaly associated with hyperphagia and defective dietary lipid absorption. Deleting Raptor in WAT also decreases C/EBPα expression and the expression of its downstream target adiponectin, providing one possible mechanism of mTORC1 function in WAT. CONCLUSIONS: mTORC1 activity in mature adipocytes is essential for maintaining normal adipose tissue growth and its selective loss in mature adipocytes leads to a progressive lipodystrophy disorder and systemic metabolic disease that shares many of the hallmarks of human congenital generalized lipodystrophy. Elsevier 2016-04-11 /pmc/articles/PMC4877665/ /pubmed/27257602 http://dx.doi.org/10.1016/j.molmet.2016.04.001 Text en © 2016 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Brief Communication
Lee, Peter L.
Tang, Yuefeng
Li, Huawei
Guertin, David A.
Raptor/mTORC1 loss in adipocytes causes progressive lipodystrophy and fatty liver disease
title Raptor/mTORC1 loss in adipocytes causes progressive lipodystrophy and fatty liver disease
title_full Raptor/mTORC1 loss in adipocytes causes progressive lipodystrophy and fatty liver disease
title_fullStr Raptor/mTORC1 loss in adipocytes causes progressive lipodystrophy and fatty liver disease
title_full_unstemmed Raptor/mTORC1 loss in adipocytes causes progressive lipodystrophy and fatty liver disease
title_short Raptor/mTORC1 loss in adipocytes causes progressive lipodystrophy and fatty liver disease
title_sort raptor/mtorc1 loss in adipocytes causes progressive lipodystrophy and fatty liver disease
topic Brief Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877665/
https://www.ncbi.nlm.nih.gov/pubmed/27257602
http://dx.doi.org/10.1016/j.molmet.2016.04.001
work_keys_str_mv AT leepeterl raptormtorc1lossinadipocytescausesprogressivelipodystrophyandfattyliverdisease
AT tangyuefeng raptormtorc1lossinadipocytescausesprogressivelipodystrophyandfattyliverdisease
AT lihuawei raptormtorc1lossinadipocytescausesprogressivelipodystrophyandfattyliverdisease
AT guertindavida raptormtorc1lossinadipocytescausesprogressivelipodystrophyandfattyliverdisease