Cargando…
TMPyP4 promotes cancer cell migration at low doses, but induces cell death at high doses
TMPyP4 is widely considered as a potential photosensitizer in photodynamic therapy and a G-quadruplex stabilizer for telomerase-based cancer therapeutics. However, its biological effects including a possible adverse-effect are poorly understood. In this study, whole genome RNA-seq analysis was used...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4879555/ https://www.ncbi.nlm.nih.gov/pubmed/27221067 http://dx.doi.org/10.1038/srep26592 |
Sumario: | TMPyP4 is widely considered as a potential photosensitizer in photodynamic therapy and a G-quadruplex stabilizer for telomerase-based cancer therapeutics. However, its biological effects including a possible adverse-effect are poorly understood. In this study, whole genome RNA-seq analysis was used to explore the alteration in gene expression induced by TMPyP4. Unexpectedly, we find that 27.67% of changed genes were functionally related to cell adhesion. Experimental evidences from cell adhesion assay, scratch-wound and transwell assay indicate that TMPyP4 at conventional doses (≤0.5 μM) increases cell-matrix adhesion and promotes the migration of tumor cells. In contrast, a high dose of TMPyP4 (≥2 μM) inhibits cell proliferation and induces cell death. The unintended “side-effect” of TMPyP4 on promoting cell migration suggests that a relative high dose of TMPyP4 is preferred for therapeutic purpose. These findings contribute to better understanding of biological effects induced by TMPyP4 and provide a new insight into the complexity and implication for TMPyP4 based cancer therapy. |
---|