Cargando…

Silencing the Nucleocytoplasmic O-GlcNAc Transferase Reduces Proliferation, Adhesion, and Migration of Cancer and Fetal Human Colon Cell Lines

The post-translational modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) is regulated by a unique couple of enzymes. O-GlcNAc transferase (OGT) transfers the GlcNAc residue from UDP-GlcNAc, the final product of the hexosamine biosynthetic pathway (HBP), whereas O-GlcNAcase (OGA)...

Descripción completa

Detalles Bibliográficos
Autores principales: Steenackers, Agata, Olivier-Van Stichelen, Stéphanie, Baldini, Steffi F., Dehennaut, Vanessa, Toillon, Robert-Alain, Le Bourhis, Xuefen, El Yazidi-Belkoura, Ikram, Lefebvre, Tony
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4879930/
https://www.ncbi.nlm.nih.gov/pubmed/27252680
http://dx.doi.org/10.3389/fendo.2016.00046
Descripción
Sumario:The post-translational modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) is regulated by a unique couple of enzymes. O-GlcNAc transferase (OGT) transfers the GlcNAc residue from UDP-GlcNAc, the final product of the hexosamine biosynthetic pathway (HBP), whereas O-GlcNAcase (OGA) removes it. This study and others show that OGT and O-GlcNAcylation levels are increased in cancer cell lines. In that context, we studied the effect of OGT silencing in the colon cancer cell lines HT29 and HCT116 and the primary colon cell line CCD841CoN. Herein, we report that OGT silencing diminished proliferation, in vitro cell survival and adhesion of primary and cancer cell lines. SiOGT dramatically decreased HT29 and CCD841CoN migration, CCD841CoN harboring high capabilities of migration in Boyden chamber system when compared to HT29 and HCT116. The expression levels of actin and tubulin were unaffected by OGT knockdown but siOGT seemed to disorganize microfilament, microtubule, and vinculin networks in CCD841CoN. While cancer cell lines harbor higher levels of OGT and O-GlcNAcylation to fulfill their proliferative and migratory properties, in agreement with their higher consumption of HBP main substrates glucose and glutamine, our data demonstrate that OGT expression is not only necessary for the biological properties of cancer cell lines but also for normal cells.