Cargando…

Dynamic Regulation of APE1/Ref-1 as a Therapeutic Target Protein

Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein that plays a central role in the cellular response to DNA damage and redox regulation against oxidative stress. APE1/Ref-1 functions in the DNA base excision repair pathway, the redox regulation of several...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Sunga, Joo, Hee Kyoung, Jeon, Byeong Hwa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Chonnam National University Medical School 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880582/
https://www.ncbi.nlm.nih.gov/pubmed/27231670
http://dx.doi.org/10.4068/cmj.2016.52.2.75
Descripción
Sumario:Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein that plays a central role in the cellular response to DNA damage and redox regulation against oxidative stress. APE1/Ref-1 functions in the DNA base excision repair pathway, the redox regulation of several transcription factors, and the control of intracellular redox status through the inhibition of reactive oxygen species (ROS) production. APE1/Ref-1 is predominantly localized in the nucleus; however, its subcellular localization is dynamically regulated and it may be found in the mitochondria or elsewhere in the cytoplasm. Studies have identified a nuclear localization signal and a mitochondrial target sequence in APE1/Ref-1, as well as the involvement of the nuclear export system, as determinants of APE1/Ref-1 subcellular distribution. Recently, it was shown that APE1/Ref-1 is secreted in response to hyperacetylation at specific lysine residues. Additionally, post-translational modifications such as phosphorylation, S-nitrosation, and ubiquitination appear to play a role in fine-tuning the activities and subcellular localization of APE1/Ref-1. In this review, we will introduce the multifunctional role of APE1/Ref-1 and its potential usefulness as a therapeutic target in cancer and cardiovascular disease.