Cargando…

Method dependence, observer variability and kidney volumes in radiation dosimetry of (177)Lu-DOTATATE therapy in patients with neuroendocrine tumours

BACKGROUND: Radionuclide therapy can be individualized by performing dosimetry. To determine absorbed organ doses in (177)Lu-DOTATATE therapy, three methods based on activity concentrations are currently in use: the small volume of interest (sVOI) method, and two methods based on large VOIs either o...

Descripción completa

Detalles Bibliográficos
Autores principales: Sandström, Mattias, Ilan, Ezgi, Karlberg, Anna, Johansson, Silvia, Freedman, Nanette, Garske-Román, Ulrike
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883125/
https://www.ncbi.nlm.nih.gov/pubmed/26501825
http://dx.doi.org/10.1186/s40658-015-0127-y
Descripción
Sumario:BACKGROUND: Radionuclide therapy can be individualized by performing dosimetry. To determine absorbed organ doses in (177)Lu-DOTATATE therapy, three methods based on activity concentrations are currently in use: the small volume of interest (sVOI) method, and two methods based on large VOIs either on anatomical CT (aVOI) or on thresholds on functional images (tVOI). The main aim of the present work was to validate the sVOI in comparison to the other two methods regarding agreement and time efficiency. Secondary aims were to investigate inter-observer variability for the sVOI and the change of functional organ volumes following therapy. METHODS: Thirty patients diagnosed with neuroendocrine tumours undergoing therapy with (177)Lu-DOTATATE were included. Each patient underwent three SPECT/CT scans at 1, 4 and 7 days after the treatment. Three independent observers calculated absorbed doses to the right and left kidney and the spleen using sVOI and one observer used aVOI. For tVOI, the absorbed doses were calculated based on automatically drawn isocontours around the organs at different thresholds (42, 50, 60 and 70 %). The inter-observer difference between the calculated absorbed doses for sVOI was calculated, and the differences between the three methods were computed. Ratios of organ volumes acquired at days 1, 4 and 7 versus the volume at day 1 were calculated for the tVOI method. RESULTS: The differences in results of the absorbed dose calculations using all the sVOI and tVOI were small (<5 %). Absorbed dose calculations using aVOI differed slightly more from these results but were still below 10 %. The differences between the three dose calculation methods varied between <5 and 10 %. The organ volumes derived from the tVOI were independent of time for the spleen while they decreased with time for the kidneys. The fastest analysis was performed with the sVOI method. CONCLUSIONS: All three dose calculation methods rendered comparable results with small inter-observer differences for sVOI. Unlike the spleen, the functional volume of the kidneys decreased over time during therapy, which suggests that the absorbed dose calculation for the kidneys on activity concentrations should be performed for each time point. The sVOI is the preferred method for calculating absorbed doses in solid organs.