Cargando…
Monovar: single nucleotide variant detection in single cells
Current variant callers are not suitable for single-cell DNA sequencing (SCS) as they do not account for allelic dropout, false-positive errors, and coverage non-uniformity. We developed Monovar, a novel statistical method for detecting and genotyping single nucleotide variants in SCS data. Evaluati...
Autores principales: | Zafar, Hamim, Wang, Yong, Nakhleh, Luay, Navin, Nicholas, Chen, Ken |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4887298/ https://www.ncbi.nlm.nih.gov/pubmed/27088313 http://dx.doi.org/10.1038/nmeth.3835 |
Ejemplares similares
-
SiCloneFit: Bayesian inference of population structure, genotype, and phylogeny of tumor clones from single-cell genome sequencing data
por: Zafar, Hamim, et al.
Publicado: (2019) -
SiFit: inferring tumor trees from single-cell sequencing data under finite-sites models
por: Zafar, Hamim, et al.
Publicado: (2017) -
Comments on the model parameters in “SiFit: inferring tumor trees from single-cell sequencing data under finite-sites models”
por: Zafar, Hamim, et al.
Publicado: (2019) -
Phylovar: toward scalable phylogeny-aware inference of single-nucleotide variations from single-cell DNA sequencing data
por: Edrisi, Mohammadamin, et al.
Publicado: (2022) -
Methods for copy number aberration detection from single-cell DNA-sequencing data
por: Mallory, Xian F., et al.
Publicado: (2020)