Cargando…

Influence of Coding Variability in APP-Aβ Metabolism Genes in Sporadic Alzheimer’s Disease

The cerebral deposition of Aβ(42), a neurotoxic proteolytic derivate of amyloid precursor protein (APP), is a central event in Alzheimer’s disease (AD)(Amyloid hypothesis). Given the key role of APP-Aβ metabolism in AD pathogenesis, we selected 29 genes involved in APP processing, Aβ degradation and...

Descripción completa

Detalles Bibliográficos
Autores principales: Sassi, Celeste, Ridge, Perry G., Nalls, Michael A., Gibbs, Raphael, Ding, Jinhui, Lupton, Michelle K., Troakes, Claire, Lunnon, Katie, Al-Sarraj, Safa, Brown, Kristelle S., Medway, Christopher, Lord, Jenny, Turton, James, Morgan, Kevin, Powell, John F., Kauwe, John S., Cruchaga, Carlos, Bras, Jose, Goate, Alison M., Singleton, Andrew B., Guerreiro, Rita, Hardy, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4889076/
https://www.ncbi.nlm.nih.gov/pubmed/27249223
http://dx.doi.org/10.1371/journal.pone.0150079
_version_ 1782434941913530368
author Sassi, Celeste
Ridge, Perry G.
Nalls, Michael A.
Gibbs, Raphael
Ding, Jinhui
Lupton, Michelle K.
Troakes, Claire
Lunnon, Katie
Al-Sarraj, Safa
Brown, Kristelle S.
Medway, Christopher
Lord, Jenny
Turton, James
Morgan, Kevin
Powell, John F.
Kauwe, John S.
Cruchaga, Carlos
Bras, Jose
Goate, Alison M.
Singleton, Andrew B.
Guerreiro, Rita
Hardy, John
author_facet Sassi, Celeste
Ridge, Perry G.
Nalls, Michael A.
Gibbs, Raphael
Ding, Jinhui
Lupton, Michelle K.
Troakes, Claire
Lunnon, Katie
Al-Sarraj, Safa
Brown, Kristelle S.
Medway, Christopher
Lord, Jenny
Turton, James
Morgan, Kevin
Powell, John F.
Kauwe, John S.
Cruchaga, Carlos
Bras, Jose
Goate, Alison M.
Singleton, Andrew B.
Guerreiro, Rita
Hardy, John
author_sort Sassi, Celeste
collection PubMed
description The cerebral deposition of Aβ(42), a neurotoxic proteolytic derivate of amyloid precursor protein (APP), is a central event in Alzheimer’s disease (AD)(Amyloid hypothesis). Given the key role of APP-Aβ metabolism in AD pathogenesis, we selected 29 genes involved in APP processing, Aβ degradation and clearance. We then used exome and genome sequencing to investigate the single independent (single-variant association test) and cumulative (gene-based association test) effect of coding variants in these genes as potential susceptibility factors for AD, in a cohort composed of 332 sporadic and mainly late-onset AD cases and 676 elderly controls from North America and the UK. Our study shows that common coding variability in these genes does not play a major role for the disease development. In the single-variant association analysis, the main hits, none of which statistically significant after multiple testing correction (1.9e(-4)<p-value<0.05), were found to be rare coding variants (0.009%<MAF<1.4%) with moderate to strong effect size (1.84<OR<Inf) that map to genes mainly involved in Aβ extracellular degradation (TTR, ACE), clearance (LRP1) and APP trafficking and recycling (SORL1). These results were partially replicated in the gene-based analysis (c-alpha and SKAT tests), that reports ECE1, LYZ and TTR as nominally associated to AD (1.7e(-3) <p-value <0.05). In concert with previous studies, we suggest that 1) common coding variability in APP-Aβ genes is not a critical factor for AD development and 2) Aβ degradation and clearance, rather than Aβ production, may play a key role in the etiology of sporadic AD.
format Online
Article
Text
id pubmed-4889076
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-48890762016-06-10 Influence of Coding Variability in APP-Aβ Metabolism Genes in Sporadic Alzheimer’s Disease Sassi, Celeste Ridge, Perry G. Nalls, Michael A. Gibbs, Raphael Ding, Jinhui Lupton, Michelle K. Troakes, Claire Lunnon, Katie Al-Sarraj, Safa Brown, Kristelle S. Medway, Christopher Lord, Jenny Turton, James Morgan, Kevin Powell, John F. Kauwe, John S. Cruchaga, Carlos Bras, Jose Goate, Alison M. Singleton, Andrew B. Guerreiro, Rita Hardy, John PLoS One Research Article The cerebral deposition of Aβ(42), a neurotoxic proteolytic derivate of amyloid precursor protein (APP), is a central event in Alzheimer’s disease (AD)(Amyloid hypothesis). Given the key role of APP-Aβ metabolism in AD pathogenesis, we selected 29 genes involved in APP processing, Aβ degradation and clearance. We then used exome and genome sequencing to investigate the single independent (single-variant association test) and cumulative (gene-based association test) effect of coding variants in these genes as potential susceptibility factors for AD, in a cohort composed of 332 sporadic and mainly late-onset AD cases and 676 elderly controls from North America and the UK. Our study shows that common coding variability in these genes does not play a major role for the disease development. In the single-variant association analysis, the main hits, none of which statistically significant after multiple testing correction (1.9e(-4)<p-value<0.05), were found to be rare coding variants (0.009%<MAF<1.4%) with moderate to strong effect size (1.84<OR<Inf) that map to genes mainly involved in Aβ extracellular degradation (TTR, ACE), clearance (LRP1) and APP trafficking and recycling (SORL1). These results were partially replicated in the gene-based analysis (c-alpha and SKAT tests), that reports ECE1, LYZ and TTR as nominally associated to AD (1.7e(-3) <p-value <0.05). In concert with previous studies, we suggest that 1) common coding variability in APP-Aβ genes is not a critical factor for AD development and 2) Aβ degradation and clearance, rather than Aβ production, may play a key role in the etiology of sporadic AD. Public Library of Science 2016-06-01 /pmc/articles/PMC4889076/ /pubmed/27249223 http://dx.doi.org/10.1371/journal.pone.0150079 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication.
spellingShingle Research Article
Sassi, Celeste
Ridge, Perry G.
Nalls, Michael A.
Gibbs, Raphael
Ding, Jinhui
Lupton, Michelle K.
Troakes, Claire
Lunnon, Katie
Al-Sarraj, Safa
Brown, Kristelle S.
Medway, Christopher
Lord, Jenny
Turton, James
Morgan, Kevin
Powell, John F.
Kauwe, John S.
Cruchaga, Carlos
Bras, Jose
Goate, Alison M.
Singleton, Andrew B.
Guerreiro, Rita
Hardy, John
Influence of Coding Variability in APP-Aβ Metabolism Genes in Sporadic Alzheimer’s Disease
title Influence of Coding Variability in APP-Aβ Metabolism Genes in Sporadic Alzheimer’s Disease
title_full Influence of Coding Variability in APP-Aβ Metabolism Genes in Sporadic Alzheimer’s Disease
title_fullStr Influence of Coding Variability in APP-Aβ Metabolism Genes in Sporadic Alzheimer’s Disease
title_full_unstemmed Influence of Coding Variability in APP-Aβ Metabolism Genes in Sporadic Alzheimer’s Disease
title_short Influence of Coding Variability in APP-Aβ Metabolism Genes in Sporadic Alzheimer’s Disease
title_sort influence of coding variability in app-aβ metabolism genes in sporadic alzheimer’s disease
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4889076/
https://www.ncbi.nlm.nih.gov/pubmed/27249223
http://dx.doi.org/10.1371/journal.pone.0150079
work_keys_str_mv AT sassiceleste influenceofcodingvariabilityinappabmetabolismgenesinsporadicalzheimersdisease
AT ridgeperryg influenceofcodingvariabilityinappabmetabolismgenesinsporadicalzheimersdisease
AT nallsmichaela influenceofcodingvariabilityinappabmetabolismgenesinsporadicalzheimersdisease
AT gibbsraphael influenceofcodingvariabilityinappabmetabolismgenesinsporadicalzheimersdisease
AT dingjinhui influenceofcodingvariabilityinappabmetabolismgenesinsporadicalzheimersdisease
AT luptonmichellek influenceofcodingvariabilityinappabmetabolismgenesinsporadicalzheimersdisease
AT troakesclaire influenceofcodingvariabilityinappabmetabolismgenesinsporadicalzheimersdisease
AT lunnonkatie influenceofcodingvariabilityinappabmetabolismgenesinsporadicalzheimersdisease
AT alsarrajsafa influenceofcodingvariabilityinappabmetabolismgenesinsporadicalzheimersdisease
AT brownkristelles influenceofcodingvariabilityinappabmetabolismgenesinsporadicalzheimersdisease
AT medwaychristopher influenceofcodingvariabilityinappabmetabolismgenesinsporadicalzheimersdisease
AT lordjenny influenceofcodingvariabilityinappabmetabolismgenesinsporadicalzheimersdisease
AT turtonjames influenceofcodingvariabilityinappabmetabolismgenesinsporadicalzheimersdisease
AT influenceofcodingvariabilityinappabmetabolismgenesinsporadicalzheimersdisease
AT morgankevin influenceofcodingvariabilityinappabmetabolismgenesinsporadicalzheimersdisease
AT powelljohnf influenceofcodingvariabilityinappabmetabolismgenesinsporadicalzheimersdisease
AT kauwejohns influenceofcodingvariabilityinappabmetabolismgenesinsporadicalzheimersdisease
AT cruchagacarlos influenceofcodingvariabilityinappabmetabolismgenesinsporadicalzheimersdisease
AT brasjose influenceofcodingvariabilityinappabmetabolismgenesinsporadicalzheimersdisease
AT goatealisonm influenceofcodingvariabilityinappabmetabolismgenesinsporadicalzheimersdisease
AT singletonandrewb influenceofcodingvariabilityinappabmetabolismgenesinsporadicalzheimersdisease
AT guerreirorita influenceofcodingvariabilityinappabmetabolismgenesinsporadicalzheimersdisease
AT hardyjohn influenceofcodingvariabilityinappabmetabolismgenesinsporadicalzheimersdisease