Cargando…
Mechanism of progestin resistance in endometrial precancer/cancer through Nrf2-AKR1C1 pathway
Progestin resistance is a main obstacle for endometrial precancer/cancer conservative therapy. Therefore, biomarkers to predict progestin resistance and studies to gain a more detailed understanding of the mechanism are needed. The antioxidant Nrf2-AKR1C1 signal pathway exerts chemopreventive activi...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4891125/ https://www.ncbi.nlm.nih.gov/pubmed/26824415 http://dx.doi.org/10.18632/oncotarget.7004 |
Sumario: | Progestin resistance is a main obstacle for endometrial precancer/cancer conservative therapy. Therefore, biomarkers to predict progestin resistance and studies to gain a more detailed understanding of the mechanism are needed. The antioxidant Nrf2-AKR1C1 signal pathway exerts chemopreventive activity. However whether it plays a role in progestin resistance has not been explored. In this study, elevated levels of AKR1C1 and Nrf2 were found in progestin-resistant endometrial epithelia, but not in responsive endometrial glands. Exogenous overexpression of Nrf2/AKR1C1 resulted in progestin resistance. Inversely, silencing of Nrf2 or AKR1C1 rendered endometrial cancer cells more susceptible to progestin treatment. Moreover, medroxyprogesterone acetate withdrawal resulted in suppression of Nrf2/AKR1C1 expression accompanied by a reduction of cellular proliferative activity. In addition, brusatol and metformin overcame progestin resistance by down-regulating Nrf2/AKR1C1 expression. Our findings suggest that overexpression of Nrf2 and AKR1C1 in endometrial precancer/cancer may be part of the molecular mechanisms underlying progestin resistance. If validated in a larger cohort, overexpression of Nrf2 and AKR1C1 may prove to be useful biomarkers to predict progestin resistance. Targeting the Nrf2/AKR1C1 pathway may represent a new therapeutic strategy for treatment of endometrial hyperplasia/cancer. |
---|