Cargando…
Nmnat1 protects neuronal function without altering phospho‐tau pathology in a mouse model of tauopathy
OBJECTIVE: The nicotinamide‐nucleotide adenylyltransferase protein Nmnat1 is a potent inhibitor of axonal degeneration in models of acute axonal injury. Hyperphosphorylation and aggregation of the microtubule‐associated protein Tau are associated with neurodegeneration in Alzheimer's Disease an...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4891997/ https://www.ncbi.nlm.nih.gov/pubmed/27547771 http://dx.doi.org/10.1002/acn3.308 |
_version_ | 1782435358252728320 |
---|---|
author | Musiek, Erik S. Xiong, David D. Patel, Tirth Sasaki, Yo Wang, Yinong Bauer, Adam Q. Singh, Risham Finn, Samantha L. Culver, Joseph P. Milbrandt, Jeffrey Holtzman, David M. |
author_facet | Musiek, Erik S. Xiong, David D. Patel, Tirth Sasaki, Yo Wang, Yinong Bauer, Adam Q. Singh, Risham Finn, Samantha L. Culver, Joseph P. Milbrandt, Jeffrey Holtzman, David M. |
author_sort | Musiek, Erik S. |
collection | PubMed |
description | OBJECTIVE: The nicotinamide‐nucleotide adenylyltransferase protein Nmnat1 is a potent inhibitor of axonal degeneration in models of acute axonal injury. Hyperphosphorylation and aggregation of the microtubule‐associated protein Tau are associated with neurodegeneration in Alzheimer's Disease and other disorders. Previous studies have demonstrated that other Nmnat isoforms can act both as axonoprotective agents and have protein chaperone function, exerting protective effects in drosophila and mouse models of tauopathy. Nmnat1 targeted to the cytoplasm (cytNmnat1) is neuroprotective in a mouse model of neonatal hypoxia‐ischemia, but the effect of cytNmnat1 on tauopathy remains unknown. METHODS: We examined the impact of overexpression of cytNmnat1 on tau pathology, neurodegeneration, and brain functional connectivity in the P301S mouse model of chronic tauopathy. RESULTS: Overexpression of cytNmnat1 preserved cortical neuron functional connectivity in P301S mice in vivo. However, whereas Nmnat1 overexpression decreased the accumulation of detergent‐insoluble tau aggregates in the cerebral cortex, it exerted no effect on immunohistochemical evidence of pathologic tau phosphorylation and misfolding, hippocampal atrophy, or inflammatory markers in P301S mice. INTERPRETATION: Our results demonstrate that cytNmnat1 partially preserves neuronal function and decreases biochemically insoluble tau in a mouse model of chronic tauopathy without preventing tau phosphorylation, formation of soluble aggregates, or tau‐induced inflammation and atrophy. Nmnat1 might thus represent a therapeutic target for tauopathies. |
format | Online Article Text |
id | pubmed-4891997 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-48919972016-08-19 Nmnat1 protects neuronal function without altering phospho‐tau pathology in a mouse model of tauopathy Musiek, Erik S. Xiong, David D. Patel, Tirth Sasaki, Yo Wang, Yinong Bauer, Adam Q. Singh, Risham Finn, Samantha L. Culver, Joseph P. Milbrandt, Jeffrey Holtzman, David M. Ann Clin Transl Neurol Research Articles OBJECTIVE: The nicotinamide‐nucleotide adenylyltransferase protein Nmnat1 is a potent inhibitor of axonal degeneration in models of acute axonal injury. Hyperphosphorylation and aggregation of the microtubule‐associated protein Tau are associated with neurodegeneration in Alzheimer's Disease and other disorders. Previous studies have demonstrated that other Nmnat isoforms can act both as axonoprotective agents and have protein chaperone function, exerting protective effects in drosophila and mouse models of tauopathy. Nmnat1 targeted to the cytoplasm (cytNmnat1) is neuroprotective in a mouse model of neonatal hypoxia‐ischemia, but the effect of cytNmnat1 on tauopathy remains unknown. METHODS: We examined the impact of overexpression of cytNmnat1 on tau pathology, neurodegeneration, and brain functional connectivity in the P301S mouse model of chronic tauopathy. RESULTS: Overexpression of cytNmnat1 preserved cortical neuron functional connectivity in P301S mice in vivo. However, whereas Nmnat1 overexpression decreased the accumulation of detergent‐insoluble tau aggregates in the cerebral cortex, it exerted no effect on immunohistochemical evidence of pathologic tau phosphorylation and misfolding, hippocampal atrophy, or inflammatory markers in P301S mice. INTERPRETATION: Our results demonstrate that cytNmnat1 partially preserves neuronal function and decreases biochemically insoluble tau in a mouse model of chronic tauopathy without preventing tau phosphorylation, formation of soluble aggregates, or tau‐induced inflammation and atrophy. Nmnat1 might thus represent a therapeutic target for tauopathies. John Wiley and Sons Inc. 2016-05-06 /pmc/articles/PMC4891997/ /pubmed/27547771 http://dx.doi.org/10.1002/acn3.308 Text en © 2016 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Musiek, Erik S. Xiong, David D. Patel, Tirth Sasaki, Yo Wang, Yinong Bauer, Adam Q. Singh, Risham Finn, Samantha L. Culver, Joseph P. Milbrandt, Jeffrey Holtzman, David M. Nmnat1 protects neuronal function without altering phospho‐tau pathology in a mouse model of tauopathy |
title | Nmnat1 protects neuronal function without altering phospho‐tau pathology in a mouse model of tauopathy |
title_full | Nmnat1 protects neuronal function without altering phospho‐tau pathology in a mouse model of tauopathy |
title_fullStr | Nmnat1 protects neuronal function without altering phospho‐tau pathology in a mouse model of tauopathy |
title_full_unstemmed | Nmnat1 protects neuronal function without altering phospho‐tau pathology in a mouse model of tauopathy |
title_short | Nmnat1 protects neuronal function without altering phospho‐tau pathology in a mouse model of tauopathy |
title_sort | nmnat1 protects neuronal function without altering phospho‐tau pathology in a mouse model of tauopathy |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4891997/ https://www.ncbi.nlm.nih.gov/pubmed/27547771 http://dx.doi.org/10.1002/acn3.308 |
work_keys_str_mv | AT musiekeriks nmnat1protectsneuronalfunctionwithoutalteringphosphotaupathologyinamousemodeloftauopathy AT xiongdavidd nmnat1protectsneuronalfunctionwithoutalteringphosphotaupathologyinamousemodeloftauopathy AT pateltirth nmnat1protectsneuronalfunctionwithoutalteringphosphotaupathologyinamousemodeloftauopathy AT sasakiyo nmnat1protectsneuronalfunctionwithoutalteringphosphotaupathologyinamousemodeloftauopathy AT wangyinong nmnat1protectsneuronalfunctionwithoutalteringphosphotaupathologyinamousemodeloftauopathy AT baueradamq nmnat1protectsneuronalfunctionwithoutalteringphosphotaupathologyinamousemodeloftauopathy AT singhrisham nmnat1protectsneuronalfunctionwithoutalteringphosphotaupathologyinamousemodeloftauopathy AT finnsamanthal nmnat1protectsneuronalfunctionwithoutalteringphosphotaupathologyinamousemodeloftauopathy AT culverjosephp nmnat1protectsneuronalfunctionwithoutalteringphosphotaupathologyinamousemodeloftauopathy AT milbrandtjeffrey nmnat1protectsneuronalfunctionwithoutalteringphosphotaupathologyinamousemodeloftauopathy AT holtzmandavidm nmnat1protectsneuronalfunctionwithoutalteringphosphotaupathologyinamousemodeloftauopathy |