Cargando…

Store-independent modulation of Ca(2+) entry through Orai by Septin 7

Orai channels are required for store-operated Ca(2+) entry (SOCE) in multiple cell types. Septins are a class of GTP-binding proteins that function as diffusion barriers in cells. Here we show that Septin 7 acts as a ‘molecular brake’ on activation of Orai channels in Drosophila neurons. Lowering Se...

Descripción completa

Detalles Bibliográficos
Autores principales: Deb, Bipan Kumar, Pathak, Trayambak, Hasan, Gaiti
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894974/
https://www.ncbi.nlm.nih.gov/pubmed/27225060
http://dx.doi.org/10.1038/ncomms11751
Descripción
Sumario:Orai channels are required for store-operated Ca(2+) entry (SOCE) in multiple cell types. Septins are a class of GTP-binding proteins that function as diffusion barriers in cells. Here we show that Septin 7 acts as a ‘molecular brake’ on activation of Orai channels in Drosophila neurons. Lowering Septin 7 levels results in dOrai-mediated Ca(2+) entry and higher cytosolic Ca(2+) in resting neurons. This Ca(2+) entry is independent of depletion of endoplasmic reticulum Ca(2+) stores and Ca(2+) release through the inositol-1,4,5-trisphosphate receptor. Importantly, store-independent Ca(2+) entry through Orai compensates for reduced SOCE in the Drosophila flight circuit. Moreover, overexpression of Septin 7 reduces both SOCE and flight duration, supporting its role as a negative regulator of Orai channel function in vivo. Septin 7 levels in neurons can, therefore, alter neural circuit function by modulating Orai function and Ca(2+) homeostasis.