Cargando…
The diagnostic application of RNA sequencing in patients with thyroid cancer: an analysis of 851 variants and 133 fusions in 524 genes
BACKGROUND: Thyroid carcinomas are known to harbor oncogenic driver mutations and advances in sequencing technology now allow the detection of these in fine needle aspiration biopsies (FNA). Recent work by The Cancer Genome Atlas (TCGA) Research Network has expanded the number of genetic alterations...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4895782/ https://www.ncbi.nlm.nih.gov/pubmed/26818556 http://dx.doi.org/10.1186/s12859-015-0849-9 |
_version_ | 1782435922873155584 |
---|---|
author | Pagan, Moraima Kloos, Richard T. Lin, Chu-Fang Travers, Kevin J. Matsuzaki, Hajime Tom, Ed Y. Kim, Su Yeon Wong, Mei G. Stewart, Andrew C. Huang, Jing Walsh, P. Sean Monroe, Robert J. Kennedy, Giulia C. |
author_facet | Pagan, Moraima Kloos, Richard T. Lin, Chu-Fang Travers, Kevin J. Matsuzaki, Hajime Tom, Ed Y. Kim, Su Yeon Wong, Mei G. Stewart, Andrew C. Huang, Jing Walsh, P. Sean Monroe, Robert J. Kennedy, Giulia C. |
author_sort | Pagan, Moraima |
collection | PubMed |
description | BACKGROUND: Thyroid carcinomas are known to harbor oncogenic driver mutations and advances in sequencing technology now allow the detection of these in fine needle aspiration biopsies (FNA). Recent work by The Cancer Genome Atlas (TCGA) Research Network has expanded the number of genetic alterations detected in papillary thyroid carcinomas (PTC). We sought to investigate the prevalence of these and other genetic alterations in diverse subtypes of thyroid nodules beyond PTC, including a variety of samples with benign histopathology. This is the first clinical evaluation of a large panel of TCGA-reported genomic alterations in thyroid FNAs. RESULTS: In FNAs, genetic alterations were detected in 19/44 malignant samples (43 % sensitivity) and in 7/44 histopathology benign samples (84 % specificity). Overall, after adding a cohort of tissue samples, 38/76 (50 %) of histopathology malignant samples were found to harbor a genetic alteration, while 15/75 (20 %) of benign samples were also mutated. The most frequently mutated malignant subtypes were medullary thyroid carcinoma (9/12, 75 %) and PTC (14/30, 47 %). Additionally, follicular adenoma, a benign subtype of thyroid neoplasm, was also found to harbor mutations (12/29, 41 %). Frequently mutated genes in malignant samples included BRAF (20/76, 26 %) and RAS (9/76, 12 %). Of the TSHR variants detected, (6/7, 86 %) were in benign nodules. In a direct comparison of the same FNA also tested by an RNA-based gene expression classifier (GEC), the sensitivity of genetic alterations alone was 42 %, compared to the 91 % sensitivity achieved by the GEC. The specificity based only on genetic alterations was 84 %, compared to 77 % specificity with the GEC. CONCLUSIONS: While the genomic landscape of all thyroid neoplasm subtypes will inevitably be elucidated, caution should be used in the early adoption of published mutations as the sole predictor of malignancy in thyroid. The largest set of such mutations known to date detects only a portion of thyroid carcinomas in preoperative FNAs in our cohort and thus is not sufficient to rule out cancer. Due to the finding that variants are also found in benign nodules, testing only GEC suspicious nodules may be helpful in avoiding false positives and altering the extent of treatment when selected mutations are found. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-015-0849-9) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4895782 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-48957822016-06-10 The diagnostic application of RNA sequencing in patients with thyroid cancer: an analysis of 851 variants and 133 fusions in 524 genes Pagan, Moraima Kloos, Richard T. Lin, Chu-Fang Travers, Kevin J. Matsuzaki, Hajime Tom, Ed Y. Kim, Su Yeon Wong, Mei G. Stewart, Andrew C. Huang, Jing Walsh, P. Sean Monroe, Robert J. Kennedy, Giulia C. BMC Bioinformatics Proceedings BACKGROUND: Thyroid carcinomas are known to harbor oncogenic driver mutations and advances in sequencing technology now allow the detection of these in fine needle aspiration biopsies (FNA). Recent work by The Cancer Genome Atlas (TCGA) Research Network has expanded the number of genetic alterations detected in papillary thyroid carcinomas (PTC). We sought to investigate the prevalence of these and other genetic alterations in diverse subtypes of thyroid nodules beyond PTC, including a variety of samples with benign histopathology. This is the first clinical evaluation of a large panel of TCGA-reported genomic alterations in thyroid FNAs. RESULTS: In FNAs, genetic alterations were detected in 19/44 malignant samples (43 % sensitivity) and in 7/44 histopathology benign samples (84 % specificity). Overall, after adding a cohort of tissue samples, 38/76 (50 %) of histopathology malignant samples were found to harbor a genetic alteration, while 15/75 (20 %) of benign samples were also mutated. The most frequently mutated malignant subtypes were medullary thyroid carcinoma (9/12, 75 %) and PTC (14/30, 47 %). Additionally, follicular adenoma, a benign subtype of thyroid neoplasm, was also found to harbor mutations (12/29, 41 %). Frequently mutated genes in malignant samples included BRAF (20/76, 26 %) and RAS (9/76, 12 %). Of the TSHR variants detected, (6/7, 86 %) were in benign nodules. In a direct comparison of the same FNA also tested by an RNA-based gene expression classifier (GEC), the sensitivity of genetic alterations alone was 42 %, compared to the 91 % sensitivity achieved by the GEC. The specificity based only on genetic alterations was 84 %, compared to 77 % specificity with the GEC. CONCLUSIONS: While the genomic landscape of all thyroid neoplasm subtypes will inevitably be elucidated, caution should be used in the early adoption of published mutations as the sole predictor of malignancy in thyroid. The largest set of such mutations known to date detects only a portion of thyroid carcinomas in preoperative FNAs in our cohort and thus is not sufficient to rule out cancer. Due to the finding that variants are also found in benign nodules, testing only GEC suspicious nodules may be helpful in avoiding false positives and altering the extent of treatment when selected mutations are found. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-015-0849-9) contains supplementary material, which is available to authorized users. BioMed Central 2016-01-11 /pmc/articles/PMC4895782/ /pubmed/26818556 http://dx.doi.org/10.1186/s12859-015-0849-9 Text en © Pagan et al. 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Proceedings Pagan, Moraima Kloos, Richard T. Lin, Chu-Fang Travers, Kevin J. Matsuzaki, Hajime Tom, Ed Y. Kim, Su Yeon Wong, Mei G. Stewart, Andrew C. Huang, Jing Walsh, P. Sean Monroe, Robert J. Kennedy, Giulia C. The diagnostic application of RNA sequencing in patients with thyroid cancer: an analysis of 851 variants and 133 fusions in 524 genes |
title | The diagnostic application of RNA sequencing in patients with thyroid cancer: an analysis of 851 variants and 133 fusions in 524 genes |
title_full | The diagnostic application of RNA sequencing in patients with thyroid cancer: an analysis of 851 variants and 133 fusions in 524 genes |
title_fullStr | The diagnostic application of RNA sequencing in patients with thyroid cancer: an analysis of 851 variants and 133 fusions in 524 genes |
title_full_unstemmed | The diagnostic application of RNA sequencing in patients with thyroid cancer: an analysis of 851 variants and 133 fusions in 524 genes |
title_short | The diagnostic application of RNA sequencing in patients with thyroid cancer: an analysis of 851 variants and 133 fusions in 524 genes |
title_sort | diagnostic application of rna sequencing in patients with thyroid cancer: an analysis of 851 variants and 133 fusions in 524 genes |
topic | Proceedings |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4895782/ https://www.ncbi.nlm.nih.gov/pubmed/26818556 http://dx.doi.org/10.1186/s12859-015-0849-9 |
work_keys_str_mv | AT paganmoraima thediagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT kloosrichardt thediagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT linchufang thediagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT traverskevinj thediagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT matsuzakihajime thediagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT tomedy thediagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT kimsuyeon thediagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT wongmeig thediagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT stewartandrewc thediagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT huangjing thediagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT walshpsean thediagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT monroerobertj thediagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT kennedygiuliac thediagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT paganmoraima diagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT kloosrichardt diagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT linchufang diagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT traverskevinj diagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT matsuzakihajime diagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT tomedy diagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT kimsuyeon diagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT wongmeig diagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT stewartandrewc diagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT huangjing diagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT walshpsean diagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT monroerobertj diagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes AT kennedygiuliac diagnosticapplicationofrnasequencinginpatientswiththyroidcancerananalysisof851variantsand133fusionsin524genes |