Cargando…
Metformin regulates oxLDL-facilitated endothelial dysfunction by modulation of SIRT1 through repressing LOX-1-modulated oxidative signaling
It is suggested that oxLDL is decisive in the initiation and development of atherosclerotic injuries. The up-regulation of oxidative stress and the generation of ROS act as key modulators in developing pro-atherosclerotic and anti-atherosclerotic processes in the human endothelial wall. In this pres...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4905438/ https://www.ncbi.nlm.nih.gov/pubmed/26885898 http://dx.doi.org/10.18632/oncotarget.7387 |
Sumario: | It is suggested that oxLDL is decisive in the initiation and development of atherosclerotic injuries. The up-regulation of oxidative stress and the generation of ROS act as key modulators in developing pro-atherosclerotic and anti-atherosclerotic processes in the human endothelial wall. In this present study, we confirmed that metformin enhanced SIRT1 and AMPK expression in human umbilical vein endothelial cells (HUVECs). Metformin also inhibited oxLDL-increased LOX-1 expression and oxLDL-collapsed AKT/eNOS levels. However, silencing SIRT1 and AMPK diminished the protective function of metformin against oxidative injuries. These results provide a new insight regarding the possible molecular mechanisms of metformin. |
---|