Cargando…

A Direct Method to Extract Transient Sub-Gap Density of State (DOS) Based on Dual Gate Pulse Spectroscopy

Sub-gap density of states (DOS) is a key parameter to impact the electrical characteristics of semiconductor materials-based transistors in integrated circuits. Previously, spectroscopy methodologies for DOS extractions include the static methods, temperature dependent spectroscopy and photonic spec...

Descripción completa

Detalles Bibliográficos
Autores principales: Dai, Mingzhi, Khan, Karim, Zhang, Shengnan, Jiang, Kemin, Zhang, Xingye, Wang, Weiliang, Liang, Lingyan, Cao, Hongtao, Wang, Pengjun, Wang, Peng, Miao, Lijing, Qin, Haiming, Jiang, Jun, Xue, Lixin, Chu, Junhao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906344/
https://www.ncbi.nlm.nih.gov/pubmed/27297030
http://dx.doi.org/10.1038/srep24096
_version_ 1782437402820739072
author Dai, Mingzhi
Khan, Karim
Zhang, Shengnan
Jiang, Kemin
Zhang, Xingye
Wang, Weiliang
Liang, Lingyan
Cao, Hongtao
Wang, Pengjun
Wang, Peng
Miao, Lijing
Qin, Haiming
Jiang, Jun
Xue, Lixin
Chu, Junhao
author_facet Dai, Mingzhi
Khan, Karim
Zhang, Shengnan
Jiang, Kemin
Zhang, Xingye
Wang, Weiliang
Liang, Lingyan
Cao, Hongtao
Wang, Pengjun
Wang, Peng
Miao, Lijing
Qin, Haiming
Jiang, Jun
Xue, Lixin
Chu, Junhao
author_sort Dai, Mingzhi
collection PubMed
description Sub-gap density of states (DOS) is a key parameter to impact the electrical characteristics of semiconductor materials-based transistors in integrated circuits. Previously, spectroscopy methodologies for DOS extractions include the static methods, temperature dependent spectroscopy and photonic spectroscopy. However, they might involve lots of assumptions, calculations, temperature or optical impacts into the intrinsic distribution of DOS along the bandgap of the materials. A direct and simpler method is developed to extract the DOS distribution from amorphous oxide-based thin-film transistors (TFTs) based on Dual gate pulse spectroscopy (GPS), introducing less extrinsic factors such as temperature and laborious numerical mathematical analysis than conventional methods. From this direct measurement, the sub-gap DOS distribution shows a peak value on the band-gap edge and in the order of 10(17)–10(21)/(cm(3)·eV), which is consistent with the previous results. The results could be described with the model involving both Gaussian and exponential components. This tool is useful as a diagnostics for the electrical properties of oxide materials and this study will benefit their modeling and improvement of the electrical properties and thus broaden their applications.
format Online
Article
Text
id pubmed-4906344
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-49063442016-06-15 A Direct Method to Extract Transient Sub-Gap Density of State (DOS) Based on Dual Gate Pulse Spectroscopy Dai, Mingzhi Khan, Karim Zhang, Shengnan Jiang, Kemin Zhang, Xingye Wang, Weiliang Liang, Lingyan Cao, Hongtao Wang, Pengjun Wang, Peng Miao, Lijing Qin, Haiming Jiang, Jun Xue, Lixin Chu, Junhao Sci Rep Article Sub-gap density of states (DOS) is a key parameter to impact the electrical characteristics of semiconductor materials-based transistors in integrated circuits. Previously, spectroscopy methodologies for DOS extractions include the static methods, temperature dependent spectroscopy and photonic spectroscopy. However, they might involve lots of assumptions, calculations, temperature or optical impacts into the intrinsic distribution of DOS along the bandgap of the materials. A direct and simpler method is developed to extract the DOS distribution from amorphous oxide-based thin-film transistors (TFTs) based on Dual gate pulse spectroscopy (GPS), introducing less extrinsic factors such as temperature and laborious numerical mathematical analysis than conventional methods. From this direct measurement, the sub-gap DOS distribution shows a peak value on the band-gap edge and in the order of 10(17)–10(21)/(cm(3)·eV), which is consistent with the previous results. The results could be described with the model involving both Gaussian and exponential components. This tool is useful as a diagnostics for the electrical properties of oxide materials and this study will benefit their modeling and improvement of the electrical properties and thus broaden their applications. Nature Publishing Group 2016-06-14 /pmc/articles/PMC4906344/ /pubmed/27297030 http://dx.doi.org/10.1038/srep24096 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Dai, Mingzhi
Khan, Karim
Zhang, Shengnan
Jiang, Kemin
Zhang, Xingye
Wang, Weiliang
Liang, Lingyan
Cao, Hongtao
Wang, Pengjun
Wang, Peng
Miao, Lijing
Qin, Haiming
Jiang, Jun
Xue, Lixin
Chu, Junhao
A Direct Method to Extract Transient Sub-Gap Density of State (DOS) Based on Dual Gate Pulse Spectroscopy
title A Direct Method to Extract Transient Sub-Gap Density of State (DOS) Based on Dual Gate Pulse Spectroscopy
title_full A Direct Method to Extract Transient Sub-Gap Density of State (DOS) Based on Dual Gate Pulse Spectroscopy
title_fullStr A Direct Method to Extract Transient Sub-Gap Density of State (DOS) Based on Dual Gate Pulse Spectroscopy
title_full_unstemmed A Direct Method to Extract Transient Sub-Gap Density of State (DOS) Based on Dual Gate Pulse Spectroscopy
title_short A Direct Method to Extract Transient Sub-Gap Density of State (DOS) Based on Dual Gate Pulse Spectroscopy
title_sort direct method to extract transient sub-gap density of state (dos) based on dual gate pulse spectroscopy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906344/
https://www.ncbi.nlm.nih.gov/pubmed/27297030
http://dx.doi.org/10.1038/srep24096
work_keys_str_mv AT daimingzhi adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT khankarim adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT zhangshengnan adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT jiangkemin adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT zhangxingye adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT wangweiliang adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT lianglingyan adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT caohongtao adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT wangpengjun adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT wangpeng adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT miaolijing adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT qinhaiming adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT jiangjun adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT xuelixin adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT chujunhao adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT daimingzhi directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT khankarim directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT zhangshengnan directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT jiangkemin directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT zhangxingye directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT wangweiliang directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT lianglingyan directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT caohongtao directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT wangpengjun directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT wangpeng directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT miaolijing directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT qinhaiming directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT jiangjun directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT xuelixin directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy
AT chujunhao directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy