Cargando…
A Direct Method to Extract Transient Sub-Gap Density of State (DOS) Based on Dual Gate Pulse Spectroscopy
Sub-gap density of states (DOS) is a key parameter to impact the electrical characteristics of semiconductor materials-based transistors in integrated circuits. Previously, spectroscopy methodologies for DOS extractions include the static methods, temperature dependent spectroscopy and photonic spec...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906344/ https://www.ncbi.nlm.nih.gov/pubmed/27297030 http://dx.doi.org/10.1038/srep24096 |
_version_ | 1782437402820739072 |
---|---|
author | Dai, Mingzhi Khan, Karim Zhang, Shengnan Jiang, Kemin Zhang, Xingye Wang, Weiliang Liang, Lingyan Cao, Hongtao Wang, Pengjun Wang, Peng Miao, Lijing Qin, Haiming Jiang, Jun Xue, Lixin Chu, Junhao |
author_facet | Dai, Mingzhi Khan, Karim Zhang, Shengnan Jiang, Kemin Zhang, Xingye Wang, Weiliang Liang, Lingyan Cao, Hongtao Wang, Pengjun Wang, Peng Miao, Lijing Qin, Haiming Jiang, Jun Xue, Lixin Chu, Junhao |
author_sort | Dai, Mingzhi |
collection | PubMed |
description | Sub-gap density of states (DOS) is a key parameter to impact the electrical characteristics of semiconductor materials-based transistors in integrated circuits. Previously, spectroscopy methodologies for DOS extractions include the static methods, temperature dependent spectroscopy and photonic spectroscopy. However, they might involve lots of assumptions, calculations, temperature or optical impacts into the intrinsic distribution of DOS along the bandgap of the materials. A direct and simpler method is developed to extract the DOS distribution from amorphous oxide-based thin-film transistors (TFTs) based on Dual gate pulse spectroscopy (GPS), introducing less extrinsic factors such as temperature and laborious numerical mathematical analysis than conventional methods. From this direct measurement, the sub-gap DOS distribution shows a peak value on the band-gap edge and in the order of 10(17)–10(21)/(cm(3)·eV), which is consistent with the previous results. The results could be described with the model involving both Gaussian and exponential components. This tool is useful as a diagnostics for the electrical properties of oxide materials and this study will benefit their modeling and improvement of the electrical properties and thus broaden their applications. |
format | Online Article Text |
id | pubmed-4906344 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-49063442016-06-15 A Direct Method to Extract Transient Sub-Gap Density of State (DOS) Based on Dual Gate Pulse Spectroscopy Dai, Mingzhi Khan, Karim Zhang, Shengnan Jiang, Kemin Zhang, Xingye Wang, Weiliang Liang, Lingyan Cao, Hongtao Wang, Pengjun Wang, Peng Miao, Lijing Qin, Haiming Jiang, Jun Xue, Lixin Chu, Junhao Sci Rep Article Sub-gap density of states (DOS) is a key parameter to impact the electrical characteristics of semiconductor materials-based transistors in integrated circuits. Previously, spectroscopy methodologies for DOS extractions include the static methods, temperature dependent spectroscopy and photonic spectroscopy. However, they might involve lots of assumptions, calculations, temperature or optical impacts into the intrinsic distribution of DOS along the bandgap of the materials. A direct and simpler method is developed to extract the DOS distribution from amorphous oxide-based thin-film transistors (TFTs) based on Dual gate pulse spectroscopy (GPS), introducing less extrinsic factors such as temperature and laborious numerical mathematical analysis than conventional methods. From this direct measurement, the sub-gap DOS distribution shows a peak value on the band-gap edge and in the order of 10(17)–10(21)/(cm(3)·eV), which is consistent with the previous results. The results could be described with the model involving both Gaussian and exponential components. This tool is useful as a diagnostics for the electrical properties of oxide materials and this study will benefit their modeling and improvement of the electrical properties and thus broaden their applications. Nature Publishing Group 2016-06-14 /pmc/articles/PMC4906344/ /pubmed/27297030 http://dx.doi.org/10.1038/srep24096 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Dai, Mingzhi Khan, Karim Zhang, Shengnan Jiang, Kemin Zhang, Xingye Wang, Weiliang Liang, Lingyan Cao, Hongtao Wang, Pengjun Wang, Peng Miao, Lijing Qin, Haiming Jiang, Jun Xue, Lixin Chu, Junhao A Direct Method to Extract Transient Sub-Gap Density of State (DOS) Based on Dual Gate Pulse Spectroscopy |
title | A Direct Method to Extract Transient Sub-Gap Density of State (DOS) Based on Dual Gate Pulse Spectroscopy |
title_full | A Direct Method to Extract Transient Sub-Gap Density of State (DOS) Based on Dual Gate Pulse Spectroscopy |
title_fullStr | A Direct Method to Extract Transient Sub-Gap Density of State (DOS) Based on Dual Gate Pulse Spectroscopy |
title_full_unstemmed | A Direct Method to Extract Transient Sub-Gap Density of State (DOS) Based on Dual Gate Pulse Spectroscopy |
title_short | A Direct Method to Extract Transient Sub-Gap Density of State (DOS) Based on Dual Gate Pulse Spectroscopy |
title_sort | direct method to extract transient sub-gap density of state (dos) based on dual gate pulse spectroscopy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906344/ https://www.ncbi.nlm.nih.gov/pubmed/27297030 http://dx.doi.org/10.1038/srep24096 |
work_keys_str_mv | AT daimingzhi adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT khankarim adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT zhangshengnan adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT jiangkemin adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT zhangxingye adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT wangweiliang adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT lianglingyan adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT caohongtao adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT wangpengjun adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT wangpeng adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT miaolijing adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT qinhaiming adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT jiangjun adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT xuelixin adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT chujunhao adirectmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT daimingzhi directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT khankarim directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT zhangshengnan directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT jiangkemin directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT zhangxingye directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT wangweiliang directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT lianglingyan directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT caohongtao directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT wangpengjun directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT wangpeng directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT miaolijing directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT qinhaiming directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT jiangjun directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT xuelixin directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy AT chujunhao directmethodtoextracttransientsubgapdensityofstatedosbasedondualgatepulsespectroscopy |