Cargando…
Finite element simulation of lower limb injuries to the driver in minibus frontal collisions
PURPOSE: This study aims to explore the biomechanical mechanism of lower limb injuries to the driver by establishing a finite element (FE) simulation model of collisions. METHODS: First a minibus FE model was integrated with a seat belt system. Then it was used to rebuild two collisions together wit...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908227/ https://www.ncbi.nlm.nih.gov/pubmed/27321294 http://dx.doi.org/10.1016/j.cjtee.2016.01.015 |
_version_ | 1782437641889775616 |
---|---|
author | Shi, Liang-Liang Lei, Chen Li, Kui Fu, Shuo-Zhen Wu, Zheng-Wei Yin, Zhi-Yong |
author_facet | Shi, Liang-Liang Lei, Chen Li, Kui Fu, Shuo-Zhen Wu, Zheng-Wei Yin, Zhi-Yong |
author_sort | Shi, Liang-Liang |
collection | PubMed |
description | PURPOSE: This study aims to explore the biomechanical mechanism of lower limb injuries to the driver by establishing a finite element (FE) simulation model of collisions. METHODS: First a minibus FE model was integrated with a seat belt system. Then it was used to rebuild two collisions together with the total human model for safety (THUMS) provided by Toyota Motor Corporation: a rear-end collision between a minibus and a truck and a head-on collision of a minibus to a rigid wall. The impact velocities of both collisions were set at 56 km/h. The vehicle dynamic response, vehicle deceleration, and dashboard intrusion in the two collisions were compared. RESULTS: In the minibus rear-end truck collision, the peak values of the von Mises equivalent stress at the tibia and the femur were 133 MPa and 126 MPa respectively; while in the minibus head-on rigid wall collision, the data were 139 MPa and 99 MPa. Compared with the minibus head-on rigid wall collision, the vehicle deceleration was smaller and the dashboard intrusion was larger in the minibus rear-end truck collision. CONCLUSION: The results illustrate that a longer dashboard incursion distance corresponds to a higher von Mises equivalent stress at the femur. The simulation results are consistent with the driver's autopsy report on lower limbs injuries. These findings verify that FE simulation method is reliable and useful to analyze the mechanisms of lower limb injuries to the driver in minibus frontal collisions. |
format | Online Article Text |
id | pubmed-4908227 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-49082272016-06-23 Finite element simulation of lower limb injuries to the driver in minibus frontal collisions Shi, Liang-Liang Lei, Chen Li, Kui Fu, Shuo-Zhen Wu, Zheng-Wei Yin, Zhi-Yong Chin J Traumatol Original Article PURPOSE: This study aims to explore the biomechanical mechanism of lower limb injuries to the driver by establishing a finite element (FE) simulation model of collisions. METHODS: First a minibus FE model was integrated with a seat belt system. Then it was used to rebuild two collisions together with the total human model for safety (THUMS) provided by Toyota Motor Corporation: a rear-end collision between a minibus and a truck and a head-on collision of a minibus to a rigid wall. The impact velocities of both collisions were set at 56 km/h. The vehicle dynamic response, vehicle deceleration, and dashboard intrusion in the two collisions were compared. RESULTS: In the minibus rear-end truck collision, the peak values of the von Mises equivalent stress at the tibia and the femur were 133 MPa and 126 MPa respectively; while in the minibus head-on rigid wall collision, the data were 139 MPa and 99 MPa. Compared with the minibus head-on rigid wall collision, the vehicle deceleration was smaller and the dashboard intrusion was larger in the minibus rear-end truck collision. CONCLUSION: The results illustrate that a longer dashboard incursion distance corresponds to a higher von Mises equivalent stress at the femur. The simulation results are consistent with the driver's autopsy report on lower limbs injuries. These findings verify that FE simulation method is reliable and useful to analyze the mechanisms of lower limb injuries to the driver in minibus frontal collisions. Elsevier 2016-06 2016-04-26 /pmc/articles/PMC4908227/ /pubmed/27321294 http://dx.doi.org/10.1016/j.cjtee.2016.01.015 Text en © 2016 Production and hosting by Elsevier B.V. on behalf of Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Shi, Liang-Liang Lei, Chen Li, Kui Fu, Shuo-Zhen Wu, Zheng-Wei Yin, Zhi-Yong Finite element simulation of lower limb injuries to the driver in minibus frontal collisions |
title | Finite element simulation of lower limb injuries to the driver in minibus frontal collisions |
title_full | Finite element simulation of lower limb injuries to the driver in minibus frontal collisions |
title_fullStr | Finite element simulation of lower limb injuries to the driver in minibus frontal collisions |
title_full_unstemmed | Finite element simulation of lower limb injuries to the driver in minibus frontal collisions |
title_short | Finite element simulation of lower limb injuries to the driver in minibus frontal collisions |
title_sort | finite element simulation of lower limb injuries to the driver in minibus frontal collisions |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908227/ https://www.ncbi.nlm.nih.gov/pubmed/27321294 http://dx.doi.org/10.1016/j.cjtee.2016.01.015 |
work_keys_str_mv | AT shiliangliang finiteelementsimulationoflowerlimbinjuriestothedriverinminibusfrontalcollisions AT leichen finiteelementsimulationoflowerlimbinjuriestothedriverinminibusfrontalcollisions AT likui finiteelementsimulationoflowerlimbinjuriestothedriverinminibusfrontalcollisions AT fushuozhen finiteelementsimulationoflowerlimbinjuriestothedriverinminibusfrontalcollisions AT wuzhengwei finiteelementsimulationoflowerlimbinjuriestothedriverinminibusfrontalcollisions AT yinzhiyong finiteelementsimulationoflowerlimbinjuriestothedriverinminibusfrontalcollisions |