Cargando…
PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection
The energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischemia. Indeed, acute kidney injury (AKI) affects 3% of all hospitalized patients.(1,2) Here we show that the mitochondrial biogenesis regulator, PGC1α,(3,4)...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909121/ https://www.ncbi.nlm.nih.gov/pubmed/26982719 http://dx.doi.org/10.1038/nature17184 |
_version_ | 1782437786490503168 |
---|---|
author | Tran, Mei T. Zsengeller, Zsuzsanna K. Berg, Anders H. Khankin, Eliyahu V. Bhasin, Manoj K. Kim, Wondong Clish, Clary B. Stillman, Isaac E. Karumanchi, S. Ananth Rhee, Eugene P. Parikh, Samir M. |
author_facet | Tran, Mei T. Zsengeller, Zsuzsanna K. Berg, Anders H. Khankin, Eliyahu V. Bhasin, Manoj K. Kim, Wondong Clish, Clary B. Stillman, Isaac E. Karumanchi, S. Ananth Rhee, Eugene P. Parikh, Samir M. |
author_sort | Tran, Mei T. |
collection | PubMed |
description | The energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischemia. Indeed, acute kidney injury (AKI) affects 3% of all hospitalized patients.(1,2) Here we show that the mitochondrial biogenesis regulator, PGC1α,(3,4) is a pivotal determinant of renal recovery from injury by regulating NAD biosynthesis. Following renal ischemia, PGC1α(−/−) mice developed local deficiency of the NAD precursor niacinamide (Nam), marked fat accumulation, and failure to re-establish normal function. Remarkably, exogenous Nam improved local NAD levels, fat accumulation, and renal function in post-ischemic PGC1α(−/−) mice. Inducible tubular transgenic mice (iNephPGC1α) recapitulated the effects of Nam supplementation, including more local NAD and less fat accumulation with better renal function after ischemia. PGC1α coordinately upregulated the enzymes that synthesize NAD de novo from amino acids whereas PGC1α deficiency or AKI attenuated the de novo pathway. Nam enhanced NAD via the enzyme NAMPT and augmented production of the fat breakdown product beta-hydroxybutyrate (β-OHB), leading to increased prostaglandin PGE(2), a secreted autocoid that maintains renal function.(5) Nam treatment reversed established ischemic AKI and also prevented AKI in an unrelated toxic model. Inhibition of β-OHB signaling or prostaglandins similarly abolished PGC1α-dependent renoprotection. Given the importance of mitochondrial health in aging and the function of metabolically active organs, the results implicate Nam and NAD as key effectors for achieving PGC1α-dependent stress resistance. |
format | Online Article Text |
id | pubmed-4909121 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
record_format | MEDLINE/PubMed |
spelling | pubmed-49091212016-09-16 PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection Tran, Mei T. Zsengeller, Zsuzsanna K. Berg, Anders H. Khankin, Eliyahu V. Bhasin, Manoj K. Kim, Wondong Clish, Clary B. Stillman, Isaac E. Karumanchi, S. Ananth Rhee, Eugene P. Parikh, Samir M. Nature Article The energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischemia. Indeed, acute kidney injury (AKI) affects 3% of all hospitalized patients.(1,2) Here we show that the mitochondrial biogenesis regulator, PGC1α,(3,4) is a pivotal determinant of renal recovery from injury by regulating NAD biosynthesis. Following renal ischemia, PGC1α(−/−) mice developed local deficiency of the NAD precursor niacinamide (Nam), marked fat accumulation, and failure to re-establish normal function. Remarkably, exogenous Nam improved local NAD levels, fat accumulation, and renal function in post-ischemic PGC1α(−/−) mice. Inducible tubular transgenic mice (iNephPGC1α) recapitulated the effects of Nam supplementation, including more local NAD and less fat accumulation with better renal function after ischemia. PGC1α coordinately upregulated the enzymes that synthesize NAD de novo from amino acids whereas PGC1α deficiency or AKI attenuated the de novo pathway. Nam enhanced NAD via the enzyme NAMPT and augmented production of the fat breakdown product beta-hydroxybutyrate (β-OHB), leading to increased prostaglandin PGE(2), a secreted autocoid that maintains renal function.(5) Nam treatment reversed established ischemic AKI and also prevented AKI in an unrelated toxic model. Inhibition of β-OHB signaling or prostaglandins similarly abolished PGC1α-dependent renoprotection. Given the importance of mitochondrial health in aging and the function of metabolically active organs, the results implicate Nam and NAD as key effectors for achieving PGC1α-dependent stress resistance. 2016-03-16 2016-03-24 /pmc/articles/PMC4909121/ /pubmed/26982719 http://dx.doi.org/10.1038/nature17184 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms Reprints and permissions information is available at www.nature.com/reprints. |
spellingShingle | Article Tran, Mei T. Zsengeller, Zsuzsanna K. Berg, Anders H. Khankin, Eliyahu V. Bhasin, Manoj K. Kim, Wondong Clish, Clary B. Stillman, Isaac E. Karumanchi, S. Ananth Rhee, Eugene P. Parikh, Samir M. PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection |
title | PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection |
title_full | PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection |
title_fullStr | PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection |
title_full_unstemmed | PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection |
title_short | PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection |
title_sort | pgc1α-dependent nad biosynthesis links oxidative metabolism to renal protection |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909121/ https://www.ncbi.nlm.nih.gov/pubmed/26982719 http://dx.doi.org/10.1038/nature17184 |
work_keys_str_mv | AT tranmeit pgc1adependentnadbiosynthesislinksoxidativemetabolismtorenalprotection AT zsengellerzsuzsannak pgc1adependentnadbiosynthesislinksoxidativemetabolismtorenalprotection AT bergandersh pgc1adependentnadbiosynthesislinksoxidativemetabolismtorenalprotection AT khankineliyahuv pgc1adependentnadbiosynthesislinksoxidativemetabolismtorenalprotection AT bhasinmanojk pgc1adependentnadbiosynthesislinksoxidativemetabolismtorenalprotection AT kimwondong pgc1adependentnadbiosynthesislinksoxidativemetabolismtorenalprotection AT clishclaryb pgc1adependentnadbiosynthesislinksoxidativemetabolismtorenalprotection AT stillmanisaace pgc1adependentnadbiosynthesislinksoxidativemetabolismtorenalprotection AT karumanchisananth pgc1adependentnadbiosynthesislinksoxidativemetabolismtorenalprotection AT rheeeugenep pgc1adependentnadbiosynthesislinksoxidativemetabolismtorenalprotection AT parikhsamirm pgc1adependentnadbiosynthesislinksoxidativemetabolismtorenalprotection |