Cargando…

KSP inhibitor SB743921 induces death of multiple myeloma cells via inhibition of the NF-κB signaling pathway

SB743921 is a potent inhibitor of the spindle protein kinesin and is being investigated in ongoing clinical trials for the treatment of myeloma. However, little is known about the molecular events underlying the induction of cell death in multiple myeloma (MM) by SB743921, alone or in combination tr...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, In-Sung, Jeong, Yu Jeong, Nyamaa, Bayalagmaa, Jeong, Seung Hun, Kim, Hyoung Kyu, Kim, Nari, Ko, Kyung Soo, Rhee, Byoung Doo, Han, Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society for Biochemistry and Molecular Biology 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911184/
https://www.ncbi.nlm.nih.gov/pubmed/25772758
http://dx.doi.org/10.5483/BMBRep.2015.48.10.015
Descripción
Sumario:SB743921 is a potent inhibitor of the spindle protein kinesin and is being investigated in ongoing clinical trials for the treatment of myeloma. However, little is known about the molecular events underlying the induction of cell death in multiple myeloma (MM) by SB743921, alone or in combination treatment. Here, we report that SB743921 induces mitochondria-mediated cell death via inhibition of the NF-κB signaling pathway, but does not cause cell cycle arrest in KMS20 MM cells. SB743921-mediated inhibition of the NF-κB pathway results in reduced expression of SOD2 and Mcl-1, leading to mitochondrial dysfunction. We also found that combination treatment with SB743921 and bortezomib induces death in bortezomib-resistant KMS20 cells. Altogether, these data suggest that treatment with SB743921 alone or in combination with bortezomib offers excellent translational potential and promises to be a novel MM therapy. [BMB Reports 2015; 48(10): 571-576]