Cargando…
Combining structure probing data on RNA mutants with evolutionary information reveals RNA-binding interfaces
Systematic structure probing experiments (e.g. SHAPE) of RNA mutants such as the mutate-and-map (MaM) protocol give us a direct access into the genetic robustness of ncRNA structures. Comparative studies of homologous sequences provide a distinct, yet complementary, approach to analyze structural an...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4914100/ https://www.ncbi.nlm.nih.gov/pubmed/27095200 http://dx.doi.org/10.1093/nar/gkw217 |
Sumario: | Systematic structure probing experiments (e.g. SHAPE) of RNA mutants such as the mutate-and-map (MaM) protocol give us a direct access into the genetic robustness of ncRNA structures. Comparative studies of homologous sequences provide a distinct, yet complementary, approach to analyze structural and functional properties of non-coding RNAs. In this paper, we introduce a formal framework to combine the biochemical signal collected from MaM experiments, with the evolutionary information available in multiple sequence alignments. We apply neutral theory principles to detect complex long-range dependencies between nucleotides of a single stranded RNA, and implement these ideas into a software called aRNhAck. We illustrate the biological significance of this signal and show that the nucleotides networks calculated with aRNhAck are correlated with nucleotides located in RNA–RNA, RNA–protein, RNA–DNA and RNA–ligand interfaces. aRNhAck is freely available at http://csb.cs.mcgill.ca/arnhack. |
---|