Cargando…
Resveratrol directly targets DDX5 resulting in suppression of the mTORC1 pathway in prostate cancer
Resveratrol has various attractive bioactivities, such as prevention of cancer, neurodegenerative disorders, and obesity-related diseases. Therefore, identifying its direct binding proteins is expected to discover druggable targets. Sirtuin 1 and phosphodiesterases have so far been found as the dire...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917653/ https://www.ncbi.nlm.nih.gov/pubmed/27148684 http://dx.doi.org/10.1038/cddis.2016.114 |
Sumario: | Resveratrol has various attractive bioactivities, such as prevention of cancer, neurodegenerative disorders, and obesity-related diseases. Therefore, identifying its direct binding proteins is expected to discover druggable targets. Sirtuin 1 and phosphodiesterases have so far been found as the direct molecular targets of resveratrol. We herein identified 11 novel resveratrol-binding proteins, including the DEAD (Asp-Glu-Ala-Asp) box helicase 5 (DDX5, also known as p68), using resveratrol-immobilized beads. Treatment with resveratrol induced degradation of DDX5 in prostate cancer cells. Depletion of DDX5 caused apoptosis by inhibiting mammalian target of rapamycin complex 1 (mTORC1) signaling. Moreover, knockdown of DDX5 attenuated the inhibitory activities of resveratrol against mTORC1 signaling and cancer cell growth. These data show that resveratrol directly targets DDX5 and induces cancer cell death by inhibiting the mTORC1 pathway. |
---|