Cargando…

Extended Synaptotagmin (ESyt) Triple Knock-Out Mice Are Viable and Fertile without Obvious Endoplasmic Reticulum Dysfunction

Extended synaptotagmins (ESyts) are endoplasmic reticulum (ER) proteins composed of an N-terminal transmembrane region, a central SMP-domain, and five (ESyt1) or three C-terminal cytoplasmic C2-domains (ESyt2 and ESyt3). ESyts bind phospholipids in a Ca(2+)-dependent manner via their C2-domains, are...

Descripción completa

Detalles Bibliográficos
Autores principales: Sclip, Alessandra, Bacaj, Taulant, Giam, Louise R., Südhof, Thomas C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4922586/
https://www.ncbi.nlm.nih.gov/pubmed/27348751
http://dx.doi.org/10.1371/journal.pone.0158295
Descripción
Sumario:Extended synaptotagmins (ESyts) are endoplasmic reticulum (ER) proteins composed of an N-terminal transmembrane region, a central SMP-domain, and five (ESyt1) or three C-terminal cytoplasmic C2-domains (ESyt2 and ESyt3). ESyts bind phospholipids in a Ca(2+)-dependent manner via their C2-domains, are localized to ER-plasma membrane contact sites, and may catalyze lipid exchange between the plasma membrane and the ER via their SMP-domains. However, the overall function of ESyts has remained enigmatic. Here, we generated triple constitutive and conditional knock-out mice that lack all three ESyt isoforms; in addition, we produced knock-in mice that express mutant ESyt1 or ESyt2 carrying inactivating substitutions in the Ca(2+)-binding sites of their C2A-domains. Strikingly, all ESyt mutant mice, even those lacking all ESyts, were apparently normal and survived and bred in a manner indistinguishable from control mice. ESyt mutant mice displayed no major changes in brain morphology or synaptic protein composition, and exhibited no large alterations in stress responses. Thus, in mice ESyts do not perform an essential role in basic cellular functions, suggesting that these highly conserved proteins may perform a specialized role that may manifest only during specific, as yet untested challenges.