Cargando…

Functional Characterization of 9-/13-LOXs in Rice and Silencing Their Expressions to Improve Grain Qualities

Lipoxygenases (LOXs) are involved in oxidative rancidity and render rice unsuitable for human consumption. Here, RNA interference- (RNAi-) induced gene expression inhibition was used to analyze the functions of the bran/seed-specific LOXs in rice. r9-LOX1 and L-2 (9-LOX category) were the candidate...

Descripción completa

Detalles Bibliográficos
Autores principales: RoyChowdhury, Moytri, Li, Xiaobai, Qi, Hangying, Li, Wenxu, Sun, Jian, Huang, Cheng, Wu, Dianxing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4925972/
https://www.ncbi.nlm.nih.gov/pubmed/27403427
http://dx.doi.org/10.1155/2016/4275904
Descripción
Sumario:Lipoxygenases (LOXs) are involved in oxidative rancidity and render rice unsuitable for human consumption. Here, RNA interference- (RNAi-) induced gene expression inhibition was used to analyze the functions of the bran/seed-specific LOXs in rice. r9-LOX1 and L-2 (9-LOX category) were the candidate genes expressing a bran/seed-specific LOX, while RCI-1 was (13-LOX category) a plastid-specific LOX. Real-time PCR showed that three LOXs were cultivar/tissue specific expression on a certain level. r9-LOX1 and L-2 were generally much higher in active bran/seed than in stabilized bran, mature seed, and regenerated plant. RCI-1 was barely expressed in seed. In transgenic lines, r9-LOX1, as well as L-2, expression was dramatically downregulated, compared to the nontransgenic controls. SPME/GC-MS analysis of r9-LOX1 RNAi transgenic lines showed 74.33% decrease in nonanal content (formed during oxidation of linoleic acid by lipoxygenase), but 388.24% increase in acetic acid and 184.84% hexanal (direct products of 13-LOX). These results indicate that r9-LOX1 positively regulates the amount of nonanal but negatively regulates acetic acid and hexanal. The negative regulation may be due to a mechanism of negative feedback between LOX family members. The information will help comprehensively understand the function of the bran/seed-specific LOXs, r9-LOX1, and improve the storage quality in the future.