Cargando…

Polysaccharide Nanoparticles for Efficient siRNA Targeting in Cancer Cells by Supramolecular pK(a) Shift

Biomacromolecular pK(a) shifting is considered as one of the most ubiquitous processes in biochemical events, e.g., the enzyme-catalyzed reaction and protein conformational stabilization. In this paper, we report on the construction of biocompatible polysaccharide nanoparticle with targeting ability...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Ying-Ming, Yang, Yang, Zhang, Yu-Hui, Liu, Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4929451/
https://www.ncbi.nlm.nih.gov/pubmed/27363811
http://dx.doi.org/10.1038/srep28848
Descripción
Sumario:Biomacromolecular pK(a) shifting is considered as one of the most ubiquitous processes in biochemical events, e.g., the enzyme-catalyzed reaction and protein conformational stabilization. In this paper, we report on the construction of biocompatible polysaccharide nanoparticle with targeting ability and lower toxicity by supramolecular pK(a) shift strategy. This was realized through a ternary assembly constructed by the dual host‒guest interactions of an adamantane-bis(diamine) conjugate (ADA) with cucurbit[6]uril (CB[6]) and a polysaccharide. The potential application of such biocompatible nanostructure was further implemented by the selective transportation of small interfering RNA (siRNA) in a controlled manner. It is demonstrated that the strong encapsulation of the ADA’s diammonium tail by CB[6] not only reduced the cytotoxicity of the nano-scaled vehicle but also dramatically enhanced cation density through an obvious positive macrocycle-induced pK(a) shift, which eventually facilitated the subsequent siRNA binding. With a targeted polysaccharide shell containing a cyclodextrin‒hyaluronic acid conjugate, macrocycle-incorporated siRNA polyplexes were specifically delivered into malignant human prostate PC-3 cells. The supramolecular polysaccharide nanoparticles, the formation of which was enabled and promoted by the complexation-assisted pK(a) shift, may be used as a versatile tool for controlled capture and release of biofunctional substrates.